Commit 9b92c1f5 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 1b3b5e85
Pipeline #15641 canceled with stage
...@@ -556,6 +556,8 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va ...@@ -556,6 +556,8 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
---------------------------- ----------------------------
<br>
**Calcul de l'onde résultante** *en notation complexe* **Calcul de l'onde résultante** *en notation complexe*
* Une **onde harmonique réelle $`U_1`$** s'écrit comme la *partie réelle de l'onde harmonique complexe $`\underline{U_1}`$*. * Une **onde harmonique réelle $`U_1`$** s'écrit comme la *partie réelle de l'onde harmonique complexe $`\underline{U_1}`$*.
...@@ -593,6 +595,24 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va ...@@ -593,6 +595,24 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
<br> <br>
$`\color{brown}{\mathbf{U(x,t)}}\; = U_1(x,t) + U_2(x,t)`$ $`\color{brown}{\mathbf{U(x,t)}}\; = U_1(x,t) + U_2(x,t)`$
$`\begin{align} \quad &=A\;\big[\,e^{\,i\;(\underbrace{(kx - \omega t}_{\color{blue}{\text{ posons }\\ kx - \omega t \,=\, \alpha}} + \varphi_1) + e^{\,i\;(\underbrace{(kx - \omega t}_{\color{blue}{=\; \alpha}} + \varphi_1)\,\big]
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1}{2} + \dfrac{\varphi_2-\varphi_2}{2}\Big) \\
&\quad\quad\quad\quad + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2}{2} + \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\
&\\
&=A\;\big[\,cos\Big(\underbrace{\alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\color{blue}{=\;\alpha '}} + \dfrac{\varphi_1-\varphi_2}{2}\Big) \\
&\quad\quad\quad\quad + \,cos\Big(\underbrace{\alpha + \dfrac{\varphi_1+\varphi_2}{2}}_{\color{blue}{\text{nous avons posé }\\ \alpha + (\varphi_1+\varphi_2)/2\; = \;\alpha '}} - \dfrac{\varphi_1-\varphi_2}{2}\Big)\,\Big]\\
&\\
&=A\;\big[\,cos\Big(\alpha ' + \dfrac{\varphi_1-\varphi_2}{2}\Big) \\
&\quad\quad\quad\quad + \,cos\Big(\alpha ' - \dfrac{\varphi_1-\varphi_2}{2}\Big)\,\Big]\\
&\\
&=A\;\big[\,\underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,-\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\color{blue}{\text{car }cos(a+b)\;=\;cos\,a\,cos\,b\;-\;sin\,a\,sin\,b}}\big)\\
&\quad + \underbrace{cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)\,+\,sin(\alpha ')\,sin\Big(\dfrac{\varphi_1-\varphi_2}{2}}_{\color{blue}{\text{car }cos(a-b)\;=\;cos\,a\,cos\,b\;+\;sin\,a\,sin\,b}}\big)\,\Big]\\
&\\
&=2\,A\cdot cos(\alpha ')\,cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big)
\end{align}`$
<br>
$`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\varphi_2}{2}\Big) \cdot cos\Big(}\color{blue}{\underbrace{\color{brown}{kx - \omega t + \dfrac{\varphi_1+\varphi_2}{2}}}_{\text{pulsation }\omega\text{ inchangée}}}\color{brown}{\Big)}}}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment