Commit 9bc817b0 authored by Claude Meny's avatar Claude Meny

suite

parent 5263be84
Pipeline #555 failed with stage
in 21 seconds
...@@ -128,8 +128,8 @@ We call **thin spherical refracting surface** a spherical refracting surface *us ...@@ -128,8 +128,8 @@ We call **thin spherical refracting surface** a spherical refracting surface *us
which defines $`\overline{SC}`$ : algebraic distance between vertex S and center C of curvature on optical axis. which defines $`\overline{SC}`$ : algebraic distance between vertex S and center C of curvature on optical axis.
* 2 refractive index values :<br> * 2 refractive index values :<br>
\- **$`n-{inc}`$ : refractive index of the medium of the incident light**.<br> \- **$`n_{inc}`$ : refractive index of the medium of the incident light**.<br>
\- **$`n-{eme}`$ : refractive index of the medium of the emergent light**. \- **$`n_{eme}`$ : refractive index of the medium of the emergent light**.
* 1 arrow : indicates the *direction of light propagation* * 1 arrow : indicates the *direction of light propagation*
* *
...@@ -145,7 +145,7 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center ...@@ -145,7 +145,7 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center
* **Transverse magnification expression**<br><br> * **Transverse magnification expression**<br><br>
**$`\overline{M_T}=\dfrac{n_{inc}\cdot\overline{SA_{ima}}}{n_{eme}\cdot\overline{SA_{obj}}}`$**&nbsp;&nbsp; (equ.2) **$`\overline{M_T}=\dfrac{n_{inc}\cdot\overline{SA_{ima}}}{n_{eme}\cdot\overline{SA_{obj}}}`$**&nbsp;&nbsp; (equ.2)
You know $`\overline{SA_{obj}}$, $n_{inc}$ and $n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$. You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$.
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :* ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment