Commit 9c80c854 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent d613ef17
Pipeline #18243 canceled with stage
...@@ -594,7 +594,7 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d ...@@ -594,7 +594,7 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d
! <br> ! <br>
! $`dE_z = \dfrac{\dens^{2D}}{2\epsilon_0}\cdot\dfrac{\rho\,z}{(\rho^2+z^2)^{\,3/2}}\,d\rho`$ <br> ! $`dE_z = \dfrac{\dens^{2D}}{2\epsilon_0}\cdot\dfrac{\rho\,z}{(\rho^2+z^2)^{\,3/2}}\,d\rho`$ <br>
! <br> ! <br>
! $`\hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0}\cdot \rho\,(\rho^2+z^2)^{-\,3/2}\,d\rho`$<br> ! $`\hspace{0.5 cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0}\cdot \rho\,(\rho^2+z^2)^{-\,3/2}\,d\rho`$<br>
! <br> ! <br>
! Calculons $`E_z`$ :<br> ! Calculons $`E_z`$ :<br>
! <br> ! <br>
...@@ -607,16 +607,16 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d ...@@ -607,16 +607,16 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d
! $`\displaystyle\hspace{1cm}=\dfrac{\dens^{2D}\,z}{2\epsilon_0} ! $`\displaystyle\hspace{1cm}=\dfrac{\dens^{2D}\,z}{2\epsilon_0}
! \int_{\rho = 0}^R - \Big(\underbrace{-\dfrac{1}{2}}_{\color{blue}{n+1}}\Big)\cdot\underbrace{2\rho}_{\color{blue}{u^{\,'}}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{\color{blue}{u^n}}\,d\rho`$<br> ! \int_{\rho = 0}^R - \Big(\underbrace{-\dfrac{1}{2}}_{\color{blue}{n+1}}\Big)\cdot\underbrace{2\rho}_{\color{blue}{u^{\,'}}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{\color{blue}{u^n}}\,d\rho`$<br>
! <br> ! <br>
! $`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[\underbrace{(\rho^2+z^2)^{-\,1/2}}_{\color{blue}{u^{n+1}}}\big]_0^R`$<br> ! $`\displaystyle \hspace{0.5 cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[\underbrace{(\rho^2+z^2)^{-\,1/2}}_{\color{blue}{u^{n+1}}}\big]_0^R`$<br>
! <br> ! <br>
! $`\color{blue}{\scriptsize{\text{Le signe moins devient plus}}}`$<br> ! $`\color{blue}{\scriptsize{\text{Le signe moins devient plus}}}`$<br>
! $`\color{blue}{\scriptsize{\text{en inversant les bornes d'intégration}}}`$<br> ! $`\color{blue}{\scriptsize{\text{en inversant les bornes d'intégration}}}`$<br>
! <br> ! <br>
! $`\displaystyle \hspace{1cm} = +\dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_R^0`$<br> ! $`\displaystyle \hspace{0.5cm} = +\dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_R^0`$<br>
! <br> ! <br>
! $`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{\sqrt{z^2}} - \dfrac{1}{\sqrt{R^2+z^2}}\right)`$<br> ! $`\displaystyle \hspace{0.5 cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{\sqrt{z^2}} - \dfrac{1}{\sqrt{R^2+z^2}}\right)`$<br>
! <br> ! <br>
! $`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{|z|} - \dfrac{1}{\sqrt{R^2+z^2}}\right)`$<br> ! $`\displaystyle \hspace{0.5 cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{|z|} - \dfrac{1}{\sqrt{R^2+z^2}}\right)`$<br>
! <br> ! <br>
! Ainsi le champ électrique s'exprime plus simplement :<br> ! Ainsi le champ électrique s'exprime plus simplement :<br>
! <br> ! <br>
...@@ -625,26 +625,7 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d ...@@ -625,26 +625,7 @@ $`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\d
! <br> ! <br>
! Pour $`z>0`$ :<br> ! Pour $`z>0`$ :<br>
! $`\overrightarrow{E}(z) = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(- 1 - \dfrac{z}{\sqrt{\rho^2+z^2}}\right)\,\overrightarrow{e_z}`$<br> ! $`\overrightarrow{E}(z) = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(- 1 - \dfrac{z}{\sqrt{\rho^2+z^2}}\right)\,\overrightarrow{e_z}`$<br>
! !! </details>
!
! $`\displaystyle E_z = \int_{\rho = 0}^R \dfrac{\dens^{2D}\,z}{2\epsilon_0}\cdot \rho\,(\rho^2+z^2)^{-\,3/2}\,d\rho`$<br>
! <br>
! $`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \int_{\rho = 0}^R\dfrac{1}{2}\times
! \underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$<br>
! <br>
! $`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[\underbrace{\dfrac{1}{2}\times\dfrac{1}{-3/2+1}}
! _{=\frac{1}{2}\,\times \,(-2) \,=\, -1}(\rho^2+z^2)^{-\,1/2}\big]_0^R`$<br>
! <br>
! $`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(\dfrac{1}{|z|} - \dfrac{1}{\sqrt{\rho^2+z^2}}\right)`$<br>
! <br>
! Ainsi le champ électrique s'exprime plus simplement :<br>
! <br>
! Pour $`z>0`$ :<br>
! $`\overrightarrow{E}(z) = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(1 - \dfrac{z}{\sqrt{\rho^2+z^2}}\right)\,\overrightarrow{e_z}`$<br>
! <br>
! Pour $`z>0`$ :<br>
! $`\overrightarrow{E}(z) = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \left(- 1 - \dfrac{z}{\sqrt{\rho^2+z^2}}\right)\,\overrightarrow{e_z}`$
! </details>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment