Commit 9f63c565 authored by Claude Meny's avatar Claude Meny

Update annex.fr.md

parent de10e8f0
Pipeline #5197 canceled with stage
...@@ -172,7 +172,7 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées ...@@ -172,7 +172,7 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
! What is the optical system giving the image of the painting? ! What is the optical system giving the image of the painting?
! </summary> ! </summary>
! <br> ! <br>
! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis. ! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.<br>
! <br> ! <br>
! </details> ! </details>
! <details markdown=1> ! <details markdown=1>
...@@ -187,11 +187,13 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées ...@@ -187,11 +187,13 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
!* The first spherical refracting surface !* The first spherical refracting surface
! $`DS1`$ encountered by the light has ! $`DS1`$ encountered by the light has
! the follwing characteristics :<br> ! the follwing characteristics :<br>
! $`\overline{S_1C_1}=+|R|=+5\;cm`$ , $`n_{ini}=1`$ and $`n_{fin}=1.5`$ ! $`\overline{S_1C_1}=+|R|=+5\;cm`$ ,
! $`n_{ini}=1`$ and $`n_{fin}=1.5`$<br>
! <br> ! <br>
! * The second spherical refracting surface $DS2$ ! * The second spherical refracting surface
! encountered by the light has the follwing characteristics :<br> ! $DS2$ encountered by the light has the follwing characteristics :<br>
! $`\overline{S_2C_2}=-|R|=-5\;cm`$ , $`n_{ini}=1.5`$ and $`n_{fin}=1`$ ! $`\overline{S_2C_2}=-|R|=-5\;cm`$ ,
! $`n_{ini}=1.5`$ and $`n_{fin}=1`$
! !
! * Algebraic distance between $DS1$ and $DS2$ is : $`\overline{S_1S_2}=+10\;cm`$ ! * Algebraic distance between $DS1$ and $DS2$ is : $`\overline{S_1S_2}=+10\;cm`$
! !
...@@ -458,24 +460,23 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées ...@@ -458,24 +460,23 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
!<summary> !<summary>
! What is the apparent magnification of the cathedral ? ! What is the apparent magnification of the cathedral ?
!</summary> !</summary>
! <br> ! * apparent magnification = angular magnification = magnifying power.
! * "apparent magnification" = "angular magnification" = "magnifying power".
! !
! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh ! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh
! cathedral sustends the apparent angles of $`\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°`$ ! cathedral sustends the apparent angles of $`\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°`$
! at your eye. ! at your eye.<br>
! <br> ! <br>
! * The image of the cathedral is 1.7 cm heigth and is located between the lens ! * The image of the cathedral is 1.7 cm heigth and is located between the lens
! (from its vertex $`S2`$) and your eyes and at 2.5cm from the lens. If your eye is ! (from its vertex $`S2`$) and your eyes and at 2.5cm from the lens. If your eye is
! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values). ! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values).
! Thus the image of the catedral subtends the apparent angle ! Thus the image of the catedral subtends the apparent angle
! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye. ! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye.<br>
! <br> ! <br>
! * The apparent magnification $`M_A`$ of the cathedral throught the lensball for my ! * The apparent magnification $`M_A`$ of the cathedral throught the lensball for my
! eye in that position is<br> ! eye in that position is<br>
! $`M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44`$.<br><br> ! $`M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44`$.<br><br>
! Taking into account that the image is reversed, the algebraic value of the apparent ! Taking into account that the image is reversed, the algebraic value of the apparent
! magnification is $`\overline{M_A}=-0.44`$. ! magnification is $`\overline{M_A}=-0.44`$.<br>
! <br> ! <br>
! * You could obtained directly this algebraic value of $`M_A`$ by considering algebraic ! * You could obtained directly this algebraic value of $`M_A`$ by considering algebraic
! lengthes and angles values in the calculations :<br><br> ! lengthes and angles values in the calculations :<br><br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment