Commit a3edd191 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent fd4b4520
Pipeline #16416 canceled with stage
...@@ -75,27 +75,27 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$. ...@@ -75,27 +75,27 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`\begin{align} \quad\;\; & =\;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} + $`\begin{align} \quad\;\; & =\;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\ \dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\ & \\
& \quad\quad\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2 & \quad\quad\;\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^2
+\cdots \\ +\cdots \\
& \\ & \\
& \quad\quad\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots & \quad\quad\;\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^k + \cdots
\end{align}`$ \end{align}`$
<br> <br>
<br> <br>
$`\begin{align} \quad\;\; & = \;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} + $`\begin{align} \quad\;\; & = \;\dfrac{1}{0!}\;\begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} +
\dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\ \dfrac{1}{1!}\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix} + \cdots \\
& \\ & \\
& \quad\quad\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2 \\ \end{pmatrix} & \quad\quad\;\; \cdots +\dfrac{1}{2!}\;\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2 \\ \end{pmatrix}
+\cdots \\ +\cdots \\
& \\ & \\
& \quad\quad\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k \\ \end{pmatrix} + \cdots & \quad\quad\;\; \cdots + \dfrac{1}{k!}\;\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k \\ \end{pmatrix} + \cdots
\end{align}`$ \end{align}`$
<br> <br>
<br> <br>
$`\quad\;\; = \;\begin{pmatrix} \dfrac{1}{n!}\displaystyle\sum_{n=0}^{+\infty}\,\lambda_1^n & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \dfrac{1}{n!}\displaystyle\sum_{n=0}^{+\infty}\,\lambda_m^n \\ \end{pmatrix}`$ $`\quad\;\; = \;\begin{pmatrix} \dfrac{1}{n!}\displaystyle\sum_{n=0}^{+\infty}\,\lambda_1^n & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \dfrac{1}{n!}\displaystyle\sum_{n=0}^{+\infty}\,\lambda_m^n \\ \end{pmatrix}`$
<br> <br>
<br> <br>
**$`\mathbf{\boldsymbol{e^{\,M}} = \;\begin{pmatrix} e^{\,\lambda_1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_m} \\ \end{pmatrix}}}`$** **$`\mathbf{e^{\,M}} = \;\begin{pmatrix} e^{\,\boldsymbol{\lambda_1}} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\boldsymbol{\lambda_m}} \\ \end{pmatrix}}`$**
##### $`M`$ est non diagonale, mais diagonalisable : ##### $`M`$ est non diagonale, mais diagonalisable :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment