Commit a57d61ac authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 2e45c6e3
Pipeline #2894 failed with stage
in 23 seconds
......@@ -141,22 +141,7 @@ de desplazamiento del punto M cuando solo aumenta infinitesimalmente la coordena
de déplacement du point M lorsque seule la coordonnée x croît de façon infinitésimale) s'écrit :<br>
<br> The unit vector tangent to the trajectory $`\overrightarrow{e_x}`$ (which indicates the direction of displacement
of the point M when only the coordinate x increases in an infinitesimal way) writes :<br>
<br>$`\overrightarrow{e_x}=\dfarc{\partial\overrightarrow{OM}_x}{||\partial\overrightarrow{OM}_x||}`$
$`\overrightarrow{e_x}=\dfrac{\dfrac{\partial \overrightarrow{OM}}{\partial x}}{\left| \left|
\dfrac{\partial \overrightarrow{OM}}{\partial x} \right| \right|}`$.
de même :$`\overrightarrow{e_y}=\dfrac{\dfrac{\partial \overrightarrow{OM}}{\partial y}}
{\left| \left| \dfrac{\partial \overrightarrow{OM}}{\partial y} \right| \right|}`$ et
$`\overrightarrow{e_z}=\dfrac{\dfrac{\partial \overrightarrow{OM}}{\partial z}}{\left| \left|
\dfrac{\partial \overrightarrow{OM}}{\partial z} \right| \right|}`$.
Les éléments vectoriels d'arc s'écrivent :<br>
<br>$`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrightarrow{OM}_x||}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment