Commit a6594cce authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 1c782564
Pipeline #16002 canceled with stage
...@@ -127,16 +127,16 @@ puis d'une onde plane progressive monochromatique (OPPM). ...@@ -127,16 +127,16 @@ puis d'une onde plane progressive monochromatique (OPPM).
$`\dfrac{\partial \overrightarrow{E}}{\partial x}=\dfrac{\partial \overrightarrow{E}}{\partial y}=0`$ $`\dfrac{\partial \overrightarrow{E}}{\partial x}=\dfrac{\partial \overrightarrow{E}}{\partial y}=0`$
<br> <br>
$`\Longrightarrow $`\Longrightarrow
\dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial x}=\dfrac{\partial E_z}{\partial x} \dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial x}=\dfrac{\partial E_z}{\partial x}`$
=\dfrac{\partial E_x}{\partial y}=\dfrac{\partial E_y}{\partial y}=\dfrac{\partial E_z}{\partial y}=0`$ $`\,=\dfrac{\partial E_x}{\partial y}=\dfrac{\partial E_y}{\partial y}=\dfrac{\partial E_z}{\partial y}=0`$
<br> <br>
et et
<br> <br>
$`\dfrac{\partial \overrightarrow{B}}{\partial x}=\dfrac{\partial \overrightarrow{B}}{\partial y}=0`$ $`\dfrac{\partial \overrightarrow{B}}{\partial x}=\dfrac{\partial \overrightarrow{B}}{\partial y}=0`$
<br> <br>
$`\Longrightarrow $`\Longrightarrow
\dfrac{\partial B_x}{\partial x}=\dfrac{\partial B_y}{\partial x}=\dfrac{\partial B_z}{\partial x} \dfrac{\partial B_x}{\partial x}=\dfrac{\partial B_y}{\partial x}=\dfrac{\partial B_z}{\partial x}`$
=\dfrac{\partial B_x}{\partial y}=\dfrac{\partial B_y}{\partial y}=\dfrac{\partial B_z}{\partial y}=0`$ $`\,=\dfrac{\partial B_x}{\partial y}=\dfrac{\partial B_y}{\partial y}=\dfrac{\partial B_z}{\partial y}=0`$
<br> <br>
...@@ -163,7 +163,7 @@ puis d'une onde plane progressive monochromatique (OPPM). ...@@ -163,7 +163,7 @@ puis d'une onde plane progressive monochromatique (OPPM).
* Le théorème de *Maxwell-Faraday* implique : * Le théorème de *Maxwell-Faraday* implique :
<br> <br>
$`\left. $`\left.
\begin{align} &\underbrace{\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}}_{\color{blue}{\text{th. de Maxwell-Faraday}}\\ \begin{align} &\underbrace{\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}}}_{\color{blue}{\text{th. de Maxwell-Faraday}}\\
\\ \\
&\overrightarrow{E}\;uniforme\\ &\overrightarrow{E}\;uniforme\\
&dans\;tout\;plan\;\perp\overrightarrow{e_z}\end{align}\right\}`$ &dans\;tout\;plan\;\perp\overrightarrow{e_z}\end{align}\right\}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment