***$`\overrightarrow{E}`$** est un *vecteur polaire*.
**$`\mathbf{\mathcal{P}_1=}`$***$`\mathbf{\mathcal{P}_1\,(M, \overrightarrow{e_{\rho}}, \overrightarrow{e_z})}`$** est *plan de symétrie* pour $`\dens`$.
**$`\mathbf{\mathcal{P}_2=}`$***$`\mathbf{\mathcal{P}_2\,(M, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{\rho}})}`$** est *plan de symétrie* pour $`\dens`$.
_figure temporaire à réviser : corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$.
**Choix de $`\mathbf{\mathcal{S}_G}`$* : **cylindre**,
* d'**axe $`Oz`$**.
* de **rayon $`\rho_M`$**, coordonnées du point $`M`$ considéré.
* de **hauteur $`h`$**.
#### Que vaut le flux de $`\overrightarrow{E}`$ à travers $`\mathbf{\mathcal{S}_G}`$ ?
* $`\mathbf{\mathcal{S}_G}`$ surface fermée se décompose en **$`\mathbf{\mathcal{S}_G=\mathcal{S}_{dis1}+\mathcal{S}_{lat}+\mathcal{S}_{dis2}}`$** avec :
***$`\mathbf{\mathcal{S}_{dis1}}`$** : *disque supérieur* d'élément vectoriel de surface **$`\mathbf{\overrightarrow{dS}=+\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
***$`\mathbf{\mathcal{S}_{lat}}`$** : *surface latérale* tel que **$`\mathbf{\overrightarrow{dS}=+\rho_M\,d\varphi\,dz\,\overrightarrow{e_{\rho}}}`$**, tous les $` \overrightarrow{dS}`$ étant ici situés à la même distance $`\rho=\rho_M`$ de l'axe de révolution du cylindre.
***$`\mathbf{\mathcal{S}_{dis2}}`$** : *disque inférieur* tel que **$`\mathbf{\overrightarrow{dS}=-\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
* $`\Phi_E^{\mathcal{S}_G}= 2\pi \rho_M\,h\, E`$ , avec $`\Phi_E`$ le flux de $`\overrightarrow{E}`$ à travers $`{\mathcal{S}_G}`$
sont *commun à toutes les distributions* de charge à symétrie cylindrique invariantes par translation selon $`Oz`$.
* Le **calcul de $`Q_{int}`$** puis **de $`\overrightarrow{E}`$** nécessitent de *connaître l'expression mathématique pour $`\dens`$* en chaque point de l'espace.
<br>
$`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans la suite.
##### Calcul de la charge $`Q_{int}`$
* $`Q_{int}`$ est la **charge contenue à l'intérieur de $`\mathbf{\mathcal{S}_G}`$**.
***$`\displaystyle\mathbf{Q_{int}=\iiint_{\Ltau_G \rightarrow\mathcal{S}_G} \dens\; d\tau}`$**, avec :
***$`\mathbf{\tau_G}`$***volume intérieur* à $`\mathbf{\mathcal{S}_G}`$.
***$`\mathbf{d\tau}`$** est l'*élément de volume*.
##### Calcul de $`\overrightarrow{E}`$
* Il *résulte de la synthèse des résultats* précédents.
* L'**égalité entre les deux termes** du théorème de Gauss *donne la composante $`E`$* du champ $`\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}`$ en tout point de l'espace :
**$`\mathbf{=\dfrac{1}{\epsilon_0}}`$***$`\,Q_{int}`$***$`\quad\Longrightarrow\mathbf{\text{ expression de }E}`$**.
<br>
Ne pas oublier le terme $`\dfrac{1}{\epsilon_0}`$.
* L'écriture complète s'écrit **$`\mathbf{\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}}`$***en remplaçant sa composante $`E`$ par son expression*.
<!--===============pour partie principale?==============
* Les symétries et invariances de $`\dens`$ ont donné en tout point $`M=M\,(\rho, \varphi, z)`$ de l'espace la direction de $`\overrightarrow{E}`$ sous la forme d'une amplitude $`E`$ et du vecteur unitaire $`\overrightarrow{e_{\rho}}`$ :
* Une surface de Gauss contenant $`M`$ et adaptée a permis de calculer une expression simple pour le flux $`\overrightarrow{E}`$ à travers elle-même.
* La charge totale $`Q_{int}`$ de la surface de Gauss a été évalué pour toute position de $`M`$.
========================================-->
<!-----trop général et confus, si amélioré, pour une partie principale------------
* En genéral, il n'y a pas de fonction mathématique décrivant la densité volumique de charge $`\dens^{3D}`$ sur tout l'espace.
* Il y a un nombre entier $`n`$ de fonctions mathématiques différentes décrivant $`\dens^{3D}`$ et qui correspondent à $`n`$ sous-espaces complémentaires de l'espace $`\mathscr{E}`$.
* Il y a un nombre entier $`n`$ de fonctions mathématiques parfois identiques décrivant $`\dens^{3D}`$ et qui correspondent à $`n`$ sous-espaces complémentaires de l'espace $`\mathscr{E}`$ séparés par des surfaces 2D caractérisées par une densité surfacique $`\dens^{2D}`$ de charge.
----------------------------------------------->
<br>
<br>
#### **1 -** Cylindre infini de rayon $`R`$ chargé uniformément en volume
#### **1 -** Cylindre infini de rayon $`R`$ chargé uniformément en volume