Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
a95b82ec
Commit
a95b82ec
authored
Oct 02, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
8a5d34b2
Pipeline
#13662
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
13 deletions
+18
-13
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+18
-13
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
a95b82ec
...
...
@@ -2,7 +2,7 @@
<br>
#### Introduction
####
1 -
Introduction
We propose to study in this chapter the conditions for propagation of
elm radiation in conductive rectangular waveguides and to identify the
...
...
@@ -10,7 +10,7 @@ main char- acteristic of this kind of propagation. We will introduce a
"practical approach" based on the previous chapter's results.
#### Practical approach
####
2 -
Practical approach
We have seen in the previous chapter that the oblique incidence of
plane waves on planar conductive materials gives rise to an
...
...
@@ -26,7 +26,7 @@ _TE and TM waves and their corresponding standing wave behaviour along the y axi
$
`\overrightarrow{E}_{\perp}=`
$$
`\underbrace{-2\,E_0\,\sin(k\; y\, \cos\theta)}_{\large{amplitude}}
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`
$
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`
$
$
`\quad(eq.1)`
$
$
`\overrightarrow{B}_{\perp}=`
$
...
...
@@ -34,7 +34,7 @@ $`\left(\begin{array}{l}
0\\
-\dfrac{2\,E_0}{c}\sin\theta \cdot \sin\,(k\; y \, \cos\theta)\cdot \sin\,(k\; z\,\sin\theta -\omega t)\\
-\dfrac{2\,E_0}{c}\cos\theta \cdot\cos\,(k\; y \, \cos\theta)\cdot\cos\,(k\; z\,\sin\theta -\omega t)
\end{array}\right)`
$
\end{array}\right)`
$
$
`\quad(eq.2)`
$
<br>
...
...
@@ -45,10 +45,10 @@ $`\left(\begin{array}{l}
0\\
+2\,E_0\,\sin\theta \cdot\cos\,(k\;y \, \cos\theta)\cdot\cos\,(k\;z\,\sin\theta -\omega t)\\
-2\,E_0\,\cos\theta \cdot\sin\,(k\; y \, \cos\theta)\cdot\sin\,(k\;z\,\sin\theta -\omega t)
\end{array}\right)`
$
\end{array}\right)`
$
$
`\quad(eq.3)`
$
$
`\overrightarrow{B}_{\parallel}=-2\,E_0\,\sin\,(k\; y\, \cos\theta)
\cdot \sin\big(k\;z\,\sin\,\theta -\omega t\big)\overrightarrow{e_z}`
$
\cdot \sin\big(k\;z\,\sin\,\theta -\omega t\big)\overrightarrow{e_z}`
$
$
`\quad(eq.4)`
$
These results are dictated by the boundary conditions at the air-metal
...
...
@@ -93,19 +93,24 @@ $`\overrightarrow{E}_{\parallel}=0\quad\Longrightarrow\quad (E_y = 0 , E_z = 0)`
$
`\overrightarrow{B}{\perp}=0\quad\Longrightarrow\quad B_x = 0`
$
*
For TE modes,
according to
eq:
[
4.1
](
#_bookmark79
)
we have that
*E\_ x*
and the only condition imposed on the electric field is that
according to
$
`(eq.1)`
$ we have that $
`\overrightarrow{E}\;\parallel\;x`
$
and the only condition imposed on the electric field is that
its tangent component must be null, its perpendicular component can
well be discontinue. For the magnetic field (eq:
[
4.2),
](
#_bookmark80
)
*B~x~*
= 0 is already satisfied. In summary, nothing changes for the
well be discontinue.
For the magnetic field $
`(eq.2)`
$
$
`b_x = 0`
$ is already satisfied.
In summary, nothing changes for the
electric or magnetic fields, but we have totally confined the
radiation in the
*x*
and
*y*
directions.
>
For
**TM modes**
(at least for TM~
*m,*
0~ or TM~0
*,n*
~, see later for
radiation in the x and y directions.
*
For TM modes,
(at least for TM_m_,_0 or TM_0_,_n, see later for
the definition of these modes), the boundary conditions cannot be
satisfied (try to show it). In what follows we will consider for
simplicity only the case of TE modes.
@@@@@@@@@@@@@@@@@@@

Figure 4.2: Rectangular waveguide with a TE mode.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment