Commit a95b82ec authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 8a5d34b2
Pipeline #13662 canceled with stage
......@@ -2,7 +2,7 @@
<br>
#### Introduction
#### 1 - Introduction
We propose to study in this chapter the conditions for propagation of
elm radiation in conductive rectangular waveguides and to identify the
......@@ -10,7 +10,7 @@ main char- acteristic of this kind of propagation. We will introduce a
"practical approach" based on the previous chapter's results.
#### Practical approach
#### 2 - Practical approach
We have seen in the previous chapter that the oblique incidence of
plane waves on planar conductive materials gives rise to an
......@@ -26,7 +26,7 @@ _TE and TM waves and their corresponding standing wave behaviour along the y axi
$`\overrightarrow{E}_{\perp}=`$$`\underbrace{-2\,E_0\,\sin(k\; y\, \cos\theta)}_{\large{amplitude}}
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`$
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`$$`\quad(eq.1)`$
$`\overrightarrow{B}_{\perp}=`$
......@@ -34,7 +34,7 @@ $`\left(\begin{array}{l}
0\\
-\dfrac{2\,E_0}{c}\sin\theta \cdot \sin\,(k\; y \, \cos\theta)\cdot \sin\,(k\; z\,\sin\theta -\omega t)\\
-\dfrac{2\,E_0}{c}\cos\theta \cdot\cos\,(k\; y \, \cos\theta)\cdot\cos\,(k\; z\,\sin\theta -\omega t)
\end{array}\right)`$
\end{array}\right)`$$`\quad(eq.2)`$
<br>
......@@ -45,10 +45,10 @@ $`\left(\begin{array}{l}
0\\
+2\,E_0\,\sin\theta \cdot\cos\,(k\;y \, \cos\theta)\cdot\cos\,(k\;z\,\sin\theta -\omega t)\\
-2\,E_0\,\cos\theta \cdot\sin\,(k\; y \, \cos\theta)\cdot\sin\,(k\;z\,\sin\theta -\omega t)
\end{array}\right)`$
\end{array}\right)`$$`\quad(eq.3)`$
$`\overrightarrow{B}_{\parallel}=-2\,E_0\,\sin\,(k\; y\, \cos\theta)
\cdot \sin\big(k\;z\,\sin\,\theta -\omega t\big)\overrightarrow{e_z}`$
\cdot \sin\big(k\;z\,\sin\,\theta -\omega t\big)\overrightarrow{e_z}`$$`\quad(eq.4)`$
These results are dictated by the boundary conditions at the air-metal
......@@ -93,19 +93,24 @@ $`\overrightarrow{E}_{\parallel}=0\quad\Longrightarrow\quad (E_y = 0 , E_z = 0)`
$`\overrightarrow{B}{\perp}=0\quad\Longrightarrow\quad B_x = 0`$
* For TE modes,
according to eq: [4.1](#_bookmark79) we have that
*E\_ x* and the only condition imposed on the electric field is that
according to $`(eq.1)`$ we have that $`\overrightarrow{E}\;\parallel\;x`$
and the only condition imposed on the electric field is that
its tangent component must be null, its perpendicular component can
well be discontinue. For the magnetic field (eq: [4.2),](#_bookmark80)
*B~x~* = 0 is already satisfied. In summary, nothing changes for the
well be discontinue.
For the magnetic field $`(eq.2)`$
$`b_x = 0`$ is already satisfied.
In summary, nothing changes for the
electric or magnetic fields, but we have totally confined the
radiation in the *x* and *y* directions.
>
For **TM modes** (at least for TM~*m,*0~ or TM~0*,n*~, see later for
radiation in the x and y directions.
* For TM modes,
(at least for TM_m_,_0 or TM_0_,_n, see later for
the definition of these modes), the boundary conditions cannot be
satisfied (try to show it). In what follows we will consider for
simplicity only the case of TE modes.
@@@@@@@@@@@@@@@@@@@
![](media/image206.png)
Figure 4.2: Rectangular waveguide with a TE mode.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment