Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
aa885b6b
Commit
aa885b6b
authored
Sep 14, 2024
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update annex.fr.md
parent
154dacd6
Pipeline
#19025
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
167 deletions
+12
-167
annex.fr.md
...cs/60.optical-systems/10.thick-lens/30.beyond/annex.fr.md
+12
-167
No files found.
12.temporary_ins/65.geometrical-optics/60.optical-systems/10.thick-lens/30.beyond/annex.fr.md
View file @
aa885b6b
...
@@ -2,173 +2,15 @@
...
@@ -2,173 +2,15 @@
title
:
Deux défis sur les systèmes optiques
title
:
Deux défis sur les systèmes optiques
published
:
true
published
:
true
routable
:
true
routable
:
true
visible
:
fals
e
visible
:
tru
e
lessons
:
lessons
:
-
-
slug
:
challenge
-optical-systems
slug
:
annex
-optical-systems
name
:
D
eux d
éfis sur les systèmes optiques
name
:
Défis sur les systèmes optiques
order
:
order
:
1
---
---
!
*YOUR CHALLENGE*
: An object (a painting), a physical system (a lensball), how many scenarios and optical systems?
!
! _Skill tested : understanding of physical situations_
!
! !
[](
physical-system-versus-optical-system_L650.gif
)
!
!
*Discovery time : 30 minutes*
<br>
!
*Resolution time : 10 minutes*
!
!
<details
markdown=
1
>
!
<summary>
! I choose it
!
</summary>
! A lensball is a simple physical system: a sphere of glass of refractive index $
`n=1.5`
$ and of radius $
`R=5\;cm`
$.
!
! A ball lensball is placed in front of a painting. Depending on the position of the observer or the camera,
! the optical system (the sequence of simple optical elements crossed by light between the physical object
! and the observed image) that forms the image differs.
!
! Observe the 3 images of the painting given by the lensball :
!
! Image 1
!
! !
[](
lentille-boule-1-transparence_L650.jpg
)
!
! Images 2 (the smallest) and 3
!
! !
[](
lentille-boule-2-reflexions_L650.jpg
)
!
! For each image of the painting, can you identify the optical system, then specify
`
! the characteristics of the various simple elements that constitute the system and their relative distances?
!
! * _The resolution time is the typical expected time to be allocated to this problem if it was part of an examen for an optics certificate._
! * _The discovery time is the expected time required to prepare this challenge if you don't have practice. But take as much time as you need._
!
! <\details>
! <details markdown=1>
! <summary>
! Ready to answer M3P2 team questions for image 1?
! </summary>
!
! <details markdown=1>
! <summary>
! Where is the painting located?
! </summary>
! * The painting is located on the other side of the lens, in relation to you.
! </details>
! <details markdown=1>
! <summary>
! What is the optical system giving the image of the painting?
! </summary>
! <br>
! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.<br>
! <br>
! </details>
! <details markdown=1>
! <summary>
! How do you characterize each of the single optical elements that make up this optical system,
! and their relative distances?
! </summary>
! <br>
! * The optical axis is oriented positively in the direction of light propagation
! (from the painting towards the lensball).<br>
! <br>
! * The first spherical refracting surface
! $`
DS1
`$ encountered by the light has
! the follwing characteristics :<br>
! $`
\o
verline{S_1C_1}=+|R|=+5
\;
cm
`$,
! $`
n_{ini}=1
`$ and $`
n_{fin}=1.5
`$.
! <br>
! * The second spherical refracting surface
! $DS2$ encountered by the light has the follwing characteristics :<br>
! $`
\o
verline{S_2C_2}=-|R|=-5
\;
cm
`$ ,
! $`
n_{ini}=1.5
`$ and $`
n_{fin}=1
`$
!
! * Algebraic distance between $DS1$ and $DS2$ is : $`
\o
verline{S_1S_2}=+10
\;
cm
`$
!
! </details>
! <details markdown=1>
! <summary>
! If you had to determine the characteristics of the image (position, size), how
! would you handle the problem?
! </summary>
!
! * $`
DS1
`$ gives an image $`
B_1
`$ of an object $`
B
`$. This image $`
B_1
`$ for $`
DS1
`$
! becomes the object for $`
DS2
`$. $`
DS2
`$ gives an image $`
B'1
`$ of the object $`
B_1
`$
!
! </details>
! </details>
! <!--FOR IMAGES 2 & 3-->
!
! <details markdown=1>
! <summary>
! Ready to answer M3P2 team questions for images 2 and 3?
! </summary>
!
! <details markdown=1>
! <summary>
! Where is the painting located?
! </summary>
!
! * The painting is located on the same side of the lens as you, behind you.
!
! </details>
! <details markdown=1>
! <summary>
!
! What are the two optical systems at the origin of the two images of the painting? And
! can you characterize each of the single optical elements (+ their relative distances)
! that make up each of these optical systems ?
! </summary>
!
! * A first optical system $`
OS1
`$ is composed of a simple convexe spherical mirror
! (the object is reflected on the front face of the ball lensball). Keaping the optical
! axis positively oriented in the direction of the incident light propagation on the lensball,
! the algebraic value of the mirror radius is : $`
\o
verline{SC}=+5
\;
c
`$.
!
! * The second optical system $`
OS2
`$ is composed of three simple optical elements :<br><br>
! 1) The light crosses a spherical refracting surface $`
DS1
`$ with characteristics :
! $`
\o
verline{S_1C_1}=+|R|=+5
\;
cm
`$ , $`
n_{ini}=1
`$ and $`
n_{fin}=1.5
`$.
!
! 2) Then the light is reflected at the surface of the last lensball interface that
! acts like a spherical mirror of characteristics : $`
\o
verline{S_2C_2}=-|R|=-5
\;
cm
`$,
! $`
n=1.5
`$.
!
! 3) Finally the light crosses back the first interface of the lensball that acts
! like a spherical refracting surface those characteristics are :
! $`
\o
verline{S_3C_3}=+|R|=+5
\;
cm
`$ , $`
n_{ini}=1.5$ and $n_{fin}=1
`$.
!
! Relative algebraic distances between the different elements of $`
OS2
`$ are :
!
! $`
\o
verline{S_1S_2}=+10
\;
cm
`$ and $`
\o
verline{S_2S_3}=-10
\;
cm
`$
!
! </details>
! <details markdown=1>
! <summary>
! Which image is associated with each of the optical systems?
! </summary>
!
! * It is difficult to be 100% sure before having made the calculations.
!
! </details>
! <details markdown=1>
! <summary>
! Why do we had to take the picture in the darkness, with only the painting
! illuminated behind the camera, to obtain images 2 and 3 ?
! </summary>
!
! * At a refracting interface, part of the light incident power is refracted,
! and part is reflected. For transparent material like glass and for visible light,
! the part of the reflected power is small. If the room had been homogeneously
! illuminated, the images 2 and 3 of the painting on the wall behind the camera would
! have been faintly visible compared to the image of the front wall through the lensball.
! </details>
! </details>
! </details>
!
*TON DÉFI : "Je regarde une cathédrale à travers une lentille boule. Puis-je prédire mon observation ?"*
.
<br>
!
*TON DÉFI : "Je regarde une cathédrale à travers une lentille boule. Puis-je prédire mon observation ?"*
.
<br>
!
<br>
!
<br>
! _Aptitude testée : Savoir poser un problème et conduire des calculs_
<br>
! _Aptitude testée : Savoir poser un problème et conduire des calculs_
<br>
...
@@ -238,7 +80,7 @@ lessons:
...
@@ -238,7 +80,7 @@ lessons:
!
<!--question 3-->
!
<!--question 3-->
!
<details
markdown=
1
>
!
<details
markdown=
1
>
!
<summary>
!
<summary>
! Quelle est
votre
méthode de résolution ?
! Quelle est
ta
méthode de résolution ?
!
</summary>
!
</summary>
! <!-----
*
You don't use general equations 3a and 3b for a thick lens, they are too complicated
! <!-----
*
You don't use general equations 3a and 3b for a thick lens, they are too complicated
! to remind, and you don't have in m3p2 to "use" but to "build a reasoning". And you don't
! to remind, and you don't have in m3p2 to "use" but to "build a reasoning". And you don't
...
@@ -407,17 +249,20 @@ lessons:
...
@@ -407,17 +249,20 @@ lessons:
!
</details>
!
</details>
!
</details>
!
</details>
!
</details>
!
</details>
!
!!
*
BEYOND*
: The gravitationnal lensball (or Einstein's ring), due to a black hole or a galaxy.
!!
*
CULTURE SCIENTIFIQUE : Lentille gravitationnelle (ou Anneau d'Einstein) due à un trou noir ou une galaxie.*
<br>
!! Similarit
ies, and differences
.
!! Similarit
és et différences avec une lentille convergente
.
!!
!!
!! !
[](
Einstein-ring-free.jpg
)
!! !
[](
Einstein-ring-free.jpg
)
!!
!!
!!
<details
markdown=
1
>
!!
<details
markdown=
1
>
!!
<summary>
!!
<summary>
!! To see
!! Un trou noir comme une galaxie lointaine donnent une ou des images déformées de galaxies situées derrière eux.
!! De ce fait ils agissent un peu comme une lentille convergente qui réalise une image des objets situés derrière elle.
!! Quelles sont les similarités et les différences entre ces phénomènes observés?
!!
</summary>
!!
</summary>
!!
still to be done, in progress
.
!!
En cours de rédaction
.
!!
</details>
!!
</details>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment