Commit aaf739cb authored by Claude Meny's avatar Claude Meny

Update cheatsheet.en.md

parent d54c41e9
Pipeline #661 failed with stage
in 23 seconds
...@@ -101,16 +101,16 @@ $`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$   ...@@ -101,16 +101,16 @@ $`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$  
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1)
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! *USEFUL 1° :<br> ! *USEFUL 1* :<br>
! The conjunction equation and the transverse magnification equation for a plane mirror ! The conjunction equation and the transverse magnification equation for a plane mirror
! are obtained by rewriting these two equations for a spherical mirror in the limit when ! are obtained by rewriting these two equations for a spherical mirror in the limit when
! $`|\overline{SC}|\longrightarrow\infty`$. ! $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and ! Then we get for a plane mirror : $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and
! $`\overline{M_T}=+1`$. ! $`\overline{M_T}=+1`$.
! *USEFUL 2° :<br> ! *USEFUL 2* :<br>
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from ! *You can find* the conjunction and the transverse magnification *equations for a plane mirror directly from
! those of the spherical mirror**, with the following assumptions :<br> ! those of the spherical mirror*, with the following assumptions :<br>
! $`n_{eme}=-n_{inc}`$<br> ! $`n_{eme}=-n_{inc}`$<br>
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction ! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! of propagation reverses after reflection on the mirror)<br> ! of propagation reverses after reflection on the mirror)<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment