Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
adadd963
Commit
adadd963
authored
Oct 17, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
8caeb7b2
Pipeline
#16772
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
11 deletions
+8
-11
cheatsheet.fr.md
...es-stationary-electric-field/20.overview/cheatsheet.fr.md
+8
-11
No files found.
12.temporary_ins/10.electrostatics-vacuum/20.causes-stationary-electric-field/20.overview/cheatsheet.fr.md
View file @
adadd963
...
...
@@ -437,18 +437,15 @@ figure
*$`\overrightarrow{dE}_{P\rightarrow M}`$*
$
`\quad=\quad\dfrac{\dens^{1D}\cdot dl_P}{4\pi\epsilon_0}\cdot\dfrac{\overrightarrow{PM}}{||\,\overrightarrow{PM}\,||^{\,3}}`
$
<br>
$
`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\dfrac{d\,\overrightarrow{e_d}}{d^3}`
$
<br>
*$`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\dfrac{1}{d^2}\cdot \overrightarrow{e_d}`$*
*$`\hspace{2.3cm}=\quad\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\dfrac{d\,\overrightarrow{e_d}}{d^3}`$*
*
Nous devons décomposer le vecteur $
`\overrightarrow{e_d}`
$ en fonction des vecteurs de la base cylindrique choisie, ce qui donne
:
<br>
*$`\quad\overrightarrow{e_d}=-\,R\,\overrightarrow{e_{\rho}}\,+\,z_M\,\overrightarrow{e_z}`$*
*
Décomposons le vecteur $
`\overrightarrow{PM} = d\,\overrightarrow{e_d}`
$ en fonction des vecteurs de la base cylindrique choisie. Nous obtenons
:
<br>
*$`\quad
d\,
\overrightarrow{e_d}=-\,R\,\overrightarrow{e_{\rho}}\,+\,z_M\,\overrightarrow{e_z}`$*
*
Nous obtenons alors :
<br>
<br>
**
$
`\boldsymbol{\mathbf{\overrightarrow{dE}_{P\rightarrow M}=\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\dfrac{1}{d^
2
}}}`
$
**
$
`\boldsymbol{\mathbf{\overrightarrow{dE}_{P\rightarrow M}=\dfrac{\dens^{1D}\cdot R\,d\varphi}{4\pi\epsilon_0}\cdot\dfrac{1}{d^
3
}}}`
$
$
`\boldsymbol{\mathbf{\cdot\big(-\,R\,\overrightarrow{e_{\rho}}\,+\,z_M\,\overrightarrow{e_z}\big)}}`
$
**
...
...
@@ -465,7 +462,7 @@ $`\boldsymbol{\mathbf{\cdot\big(-\,R\,\overrightarrow{e_{\rho}}\,+\,z_M\,\overri
Ainsi
**seule la composante $`dE_{P\rightarrow M,z}`$**
$
`\; = \overrightarrow{dE}_{P\rightarrow M}\cdot\overrightarrow{e_z}`
$
du champ électrique élémentaire selon $
`z`
$
**contribue au champ total $`\overrightarrow{E}_M`$**
:
<br>
*$`\boldsymbol{\mathbf{\overrightarrow{dE}_{P\rightarrow M,z}=\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
2
}\,d\varphi\,\overrightarrow{e_z}}}`$*
*$`\boldsymbol{\mathbf{\overrightarrow{dE}_{P\rightarrow M,z}=\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
3
}\,d\varphi\,\overrightarrow{e_z}}}`$*
*
Le
**champ électrique total**
$
`\overrightarrow{E}_M`
$ en tout point $
`M`
$ de l'axe $
`Oz`
$, s'obtient en faisant
la
*somme intégrale des $`\overrightarrow{dE}_{P\rightarrow M,z}`$*
(principe de superposition appliqué
...
...
@@ -486,11 +483,11 @@ $`\boldsymbol{\mathbf{\cdot\big(-\,R\,\overrightarrow{e_{\rho}}\,+\,z_M\,\overri
en faisant varier
*$`\varphi_P`$ entre $`0`$ et $`2\pi`$*
.
<br>
**$`\boldsymbol{\mathbf{E_M}}`$**
*$`\displaystyle\boldsymbol{\mathbf{\;=\int_{\varphi = 0}^{2\pi}\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
2
}\,d\varphi}}`$*
*$`\displaystyle\boldsymbol{\mathbf{\;=\int_{\varphi = 0}^{2\pi}\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
3
}\,d\varphi}}`$*
<br>
$
`\displaystyle\hspace{2.3cm}=\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
2
}\;\underbrace{\int_{\varphi = 0}^{2\pi}\,d\varphi}_{\color{blue}{=\big[\varphi\big]_0^{2\pi}=2\pi-0}}`
$
$
`\displaystyle\hspace{2.3cm}=\dfrac{\dens^{1D}}{4\pi\epsilon_0}\cdot\dfrac{R\,z_M}{d^
3
}\;\underbrace{\int_{\varphi = 0}^{2\pi}\,d\varphi}_{\color{blue}{=\big[\varphi\big]_0^{2\pi}=2\pi-0}}`
$
<br>
**$`\boldsymbol{\mathbf{\hspace{2.3cm}=\dfrac{\dens^{1D}}{2\epsilon_0}\cdot\dfrac{R\,z_M}{d^
2
}}}`$**
**$`\boldsymbol{\mathbf{\hspace{2.3cm}=\dfrac{\dens^{1D}}{2\epsilon_0}\cdot\dfrac{R\,z_M}{d^
3
}}}`$**
En cours de rédaction
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment