Commit ae57b3e0 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 961123c0
Pipeline #12803 canceled with stage
...@@ -186,11 +186,11 @@ $`\Longrightarrow`$ ...@@ -186,11 +186,11 @@ $`\Longrightarrow`$
À tout instant t, À tout instant t,
et pour toute surface $`S`$ ouverte et orientée, fixe et indéformable, qui s'appuie sur un contour $`\Gamma`$ et pour toute surface $`S`$ ouverte et orientée, fixe et indéformable, qui s'appuie sur un contour $`\Gamma`$
d'orientation compatible avec celle de $`S`$ selon la règle de la main droite : d'orientation compatible avec celle de $`S`$ selon la règle de la main droite :
<br>
$`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}`$ $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}`$
$`\Longrightarrow`$$` \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`$ $`\Longrightarrow`$$` \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS}`$
<br>
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\ \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \iint_S\Big(\mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\Big)\cdot\overrightarrow{dS} \\
...@@ -200,7 +200,7 @@ $`\left.\begin{array}{l} ...@@ -200,7 +200,7 @@ $`\left.\begin{array}{l}
$`\Longrightarrow`$ $`\Longrightarrow`$
$`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS}`$$`\; = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} + $`\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS}`$$`\; = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
\mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}`$ \mu_0 \epsilon_0\dfrac{d}{dt}\iint_S\overrightarrow{E}\cdot\overrightarrow{dS}`$
<br>
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} + \iint_S \overrightarrow{rot} \,\overrightarrow{B}\cdot\overrightarrow{dS} = \mu_0\iint_S \overrightarrow{j}\cdot\overrightarrow{dS} +
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment