Commit ae9be326 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 522c8158
Pipeline #10431 canceled with stage
......@@ -104,7 +104,10 @@ $`\sin(\theta + \alpha)=\sin(\theta)\,\cos(\alpha)\,+\,\sin(\alpha)\,\cos(\theta
donc
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta + \alpha)\,-\,\sin(a)\sin(\alpha)\sin(\theta + \alpha)
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)\cos(\theta)\,\cos(\alpha)
\,-\,\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin(\alpha)\sin(\alpha)\,\cos(\theta)
\,+\,\sin(a)\,\cos^2(\alpha)\,\sin(\theta)
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)
\,+\,\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)
......@@ -130,6 +133,8 @@ $`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos(\alpha)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment