Commit aeba19d8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent c3f57b97
Pipeline #15654 canceled with stage
...@@ -617,11 +617,11 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va ...@@ -617,11 +617,11 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
$`\quad =A\cdot(c\,\alpha\;+\;i\,s\,\alpha) \cdot \big[\,(c\varphi_1\,+\,c\varphi_2)\;+\; i\,(s\varphi_1\,+\,s\varphi_2)\,\big]`$ $`\quad =A\cdot(c\,\alpha\;+\;i\,s\,\alpha) \cdot \big[\,(c\varphi_1\,+\,c\varphi_2)\;+\; i\,(s\varphi_1\,+\,s\varphi_2)\,\big]`$
<br> <br>
$`\color{blue}{\scriptsize{\left| \begin{align} \quad &cos(a+b)=cos(a)\,cos(b)-sin(a)\,sin(b)\\ $`\color{blue}{\scriptsize{\left| \begin{align} \quad &cos(a+b)=cos(a)\,cos(b)-sin(a)\,sin(b)\\
&cos(a-b)=cos(a)\,cos(b)+-sin(a)\,sin(b)\end{align}`$ &cos(a-b)=cos(a)\,cos(b)+-sin(a)\,sin(b)\end{align}\right.}}`$
$`\color{blue}{\scriptsize{ \Longrightarrow cos(a+b)+cos(a-b)=2\,cos(a)\,cos(b)`$ $`\color{blue}{\scriptsize{ \Longrightarrow cos(a+b)+cos(a-b)=2\,cos(a)\,cos(b)}}`$
$`\color{blue}{\scriptsize{ \text{En posant } p=a+b \text{ et } q=a-b ,`$ $`\color{blue}{\scriptsize{ \text{En posant } p=a+b \text{ et } q=a-b\;,}}`$
$`\color{blue}{\scriptsize{ \text{nous obtenons } a = (p+q)\,/\,2 \text{ et } b = (p-q)\,/\,2.`$ $`\color{blue}{\scriptsize{ \text{nous obtenons } a = (p+q)\,/\,2 \text{ et } b = (p-q)\,/\,2.}}`$
$`\color{blue}{\scriptsize{ \text{Nous retrouvons ainsi } cos(p) + cos(q) = 2\,\dfrac{p+q}{2}\,\dfrac{p-q}{2}`$ $`\color{blue}{\scriptsize{ \text{Nous retrouvons ainsi } cos(p) + cos(q) = 2\,\dfrac{p+q}{2}\,\dfrac{p-q}{2}}}`$
<br> <br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment