Commit bbe97760 authored by Claude Meny's avatar Claude Meny

Add new file

parent 1815e247
Pipeline #13529 canceled with stage
---
title: "Combinaisons d'opérateurs"
published: true
routable: true
visible: false
---
### Combinaisons d'opérateurs
Le Laplacien vectoriel s'écrit, en fonction des opérateurs $`\overrightarrow{grad}`$, $`div`$ et opérateurs $`\overrightarrow{rot}`$ :
$`\large{mathbf{\Delta\;\overrightarrow{E}=\;\overrightarrow{grad}\big(div\;\overrightarrow{E}\big)
-\ overrightarrow{rot}\big(-\ overrightarrow{rot}\,\overrightarrow{E}}}`$
---ok
Vérifions sont expression en coordonnées cartésiennes :
$`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
\begin{array}{l}\left(
\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}\\
\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}\\
\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}
\right)\end{array}}`$
$`\overrightarrow{rot}\big(-\ overrightarrow{rot}\,\overrightarrow{E}=
\begin{array}{l}\left[
dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}}
\right)
-\dfrac{\partial}{\partial z}\left(
\color{blue}{\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}}
\right)\\
\dfrac{\partial}{\partial z}\left(
\color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}}
\right)
-\dfrac{\partial}{\partial x}\left(
\color{blue}{\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}}
\right)\\
\dfrac{\partial}{\partial x}\left(
\color{blue}{\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}}
\right)
-\dfrac{\partial}{\partial y}\left(
\color{blue}{\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}}
\right)
\end{array}\right]`$
---ok
$`\color{blue}{\overrightarrow{rot}\,\overrightarrow{E}=
\begin{array}{l}\left(
\dfrac{\partial^2 E_y}{\partial y\,\partial x}
-\dfrac{\partial^2 E_x}{\partial y^2}
-\dfrac{\partial^2 E_x}{\partial z^2}
+\dfrac{\partial^2 E_z}{\partial z\,\partial x} \\
\dfrac{\partial^2 E_z}{\partial z\,\partial y}
-\dfrac{\partial^2 E_y}{\partial z^2}
-\dfrac{\partial^2 E_y}{\partial x^2}
+\dfrac{\partial^2 E_x}{\partial x\,\partial y} \\
\dfrac{\partial^2 E_y}{\partial x\,\partial z}
-\dfrac{\partial^2 E_x}{\partial x^2}
-\dfrac{\partial^2 E_z}{\partial y^2}
+\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
\right)\end{array}}`$
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment