Commit c1cce7c2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a6594cce
Pipeline #16003 canceled with stage
......@@ -163,14 +163,25 @@ puis d'une onde plane progressive monochromatique (OPPM).
* Le théorème de *Maxwell-Faraday* implique :
<br>
$`\left.
\begin{align} &\underbrace{\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}}}_{\color{blue}{\text{th. de Maxwell-Faraday}}\\
\begin{align}
&\underbrace{\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}}
_{\color{blue}{\text{th. de Maxwell-Faraday}}}\\
\\
&\overrightarrow{E}\;uniforme\\
&dans\;tout\;plan\;\perp\overrightarrow{e_z}\end{align}\right\}`$
<br>
$`\Longrightarrow\left\{
\begin{align}
&\dfrac{\partial E_x}{\partial x}+\dfrac{\partial E_y}{\partial y}
&\left|\begin{align}
\dfrac{\partial E_z}{\partial y}-\dfrac{\partial E_y}{\partial z}=-\dfrac{\partial B_x}{\partial t}\\
\dfrac{\partial E_x}{\partial z}-\dfrac{\partial E_z}{\partial x}=-\dfrac{\partial B_y}{\partial t}\\
\dfrac{\partial E_y}{\partial x}-\dfrac{\partial E_x}{\partial y}=-\dfrac{\partial B_z}{\partial t}
\end{align}\right.\\
\dfrac{\partial E_z}{\partial y}=\dfrac{\partial E_y}{\partial z}=\dfrac{\partial E_x}{\partial z}\\
\quad =\dfrac{\partial E_z}{\partial x}=\dfrac{\partial E_y}{\partial x}=\dfrac{\partial E_x}{\partial y}=0
\end{align}\right.`$
\dfrac{\partial E_x}{\partial x}+\dfrac{\partial E_y}{\partial y}
+\dfrac{\partial E_z}{\partial z}=0\\
\\
&\dfrac{\partial E_x}{\partial x}=\dfrac{\partial E_y}{\partial y}=0
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment