Commit c739bd5d authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 0d749a55
Pipeline #16462 failed with stage
......@@ -63,7 +63,7 @@ Par définition : $`\forall k\in \mathbb{N}^{*}\setminus \{1\}`$ $`\forall k\in
$`= \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\times\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
*$`\mathbf{\quad = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
*$`\mathbf{M^2 = \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
Et par récurrence,
......@@ -73,7 +73,7 @@ $`\forall k \in \mathbb{N}^{*}\setminus\{1\}`$ <!--\setminus -->
$`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\;\times\; \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`$
**$`\mathbf{\quad = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
**$`\mathbf{M^k = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
##### $`M`$ est non diagonale, mais diagonalisable`$
......@@ -83,9 +83,9 @@ $`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \
$`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\;
\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
$`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^{\,2}`$
$`= P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m \\ \end{pmatrix}^{\,2}\,P^{-1}`$
*$`\mathbf{= P\,\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
*$`\mathbf{M^2 = P\,\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}\,P^{-1}}`$*
Et par récurrence :
......@@ -95,7 +95,7 @@ $`\forall k \in \mathbb{N}^{*}\backslash \{1\}`$
$` = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\,\times\, P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`$
**$`\mathbf{ = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`$**
**$`\mathbf{M^k = P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}\,P^{-1}}`$**
<br>
......@@ -155,7 +155,7 @@ $`\quad\;\; = \;\begin{pmatrix} \displaystyle\sum_{n=0}^{+\infty}\,\dfrac{\lambd
avec les lmbdas valeurs propres et P ... à terminer, en fonction de ce qu'on met avant.
$`\begin{pspicture}(0,0)(2,2)\pscurve[linecolor=red](0,0)(1,2)(2,1)\end{pspicture}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment