Commit c87b799f authored by Claude Meny's avatar Claude Meny

Update...

Update 12.temporary_ins/10.electrostatics-vacuum/40.gauss-theorem-applications/25.cylindrical-charge-distributions/20.gauss-local/20.overview/cheatsheet.fr.md
parent 41baf341
Pipeline #17008 canceled with stage
......@@ -223,7 +223,7 @@ $`\require{\cancel}=\dfrac{1}{\rho}\cdot\dfrac{\partial\left(\rho\,E_{\rho}\righ
#### Qu'impliquent les invariances de $`\overrightarrow{E}`$ ?
* L'étude des invariances de la distribution de charge implique en tout point de l'espace : **$`\mathbf{\overrightarrow{E}=\overrightarrow{E}(\rho)}=E_{\rho}(\rho)\,\overrightarrow{E_\rho}`$**
* L'étude des invariances de la distribution de charge implique en tout point de l'espace : **$`\mathbf{\overrightarrow{E}=\overrightarrow{E}(\rho)}=E_{\rho}(\rho)\,\overrightarrow{e_\rho}`$**
* Dans l'espression $`\dfrac{\partial\left(\rho\,E_{\rho}\right)}{\partial\,\rho}`$, le terme **$`\rho\,E_{\rho}(\rho)`$** est une **fonction de la seule coordonnée $`\rho`$**. l'opérateur de *dérivée partielle* $`\dfrac{\partial}{\partial\,\rho}`$ peut être *remplacée par* l'opérateur de *dérivée totale* $`\dfrac{d}{d\rho}`$.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment