$`\mathscr{R}(O,x,y,z,t)`$ où $`(O,x,y,z)`$ est un système de coordonnées cartésiennes, immobile dans $`\mathscr{R}`$
*Référentiel galiléen ou d'inertie* :
$``\Longleftrightarrow`$ un corps isolé est immobile ou animé d'un mouvement rectiligne uniforme.
$`\Longleftrightarrow`$ un corps soumis à aucune interaction est immobile ou animé d'un mouvement rectiligne uniforme.
*Lois de transformation de Galilée* :
Soient un référentiel galiléen $`\mathscr{R}(O,x,y,z,t)`$ et un référentiel $`\mathscr{R}(O',x',y',z',t')'`$ en translation rectiligne selon $`Ox`$ et uniforme à la vitesse $`V`$ par rapport à $`\mathscr{R}`$.
...
...
@@ -89,7 +89,7 @@ RÉSUMÉ
$`a_x'=a_x\;,\;a_y'=a_y\;,\;a_z'=a_z`$
Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel