Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
cf6b2dca
Commit
cf6b2dca
authored
Aug 29, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
bf2c324f
Pipeline
#2906
failed with stage
in 23 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
43 additions
and
3 deletions
+43
-3
textbook.fr.md
...ent/04.reference-frames-coordinate-systems/textbook.fr.md
+43
-3
No files found.
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md
View file @
cf6b2dca
...
@@ -183,10 +183,50 @@ se escribe :<br>
...
@@ -183,10 +183,50 @@ se escribe :<br>
est l'élément de longueur $
`dl_x`
$, donc le vecteur $
`\overrightarrow{e_x}`
$ s'écrit :
<br>
est l'élément de longueur $
`dl_x`
$, donc le vecteur $
`\overrightarrow{e_x}`
$ s'écrit :
<br>
[
EN
]
the norm (or length) of the vector $
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`
$
[
EN
]
the norm (or length) of the vector $
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`
$
is the scalar line element $
`dl_x`
$, so the vector $
`\overrightarrow{e_x}`
$ writes :
<br>
is the scalar line element $
`dl_x`
$, so the vector $
`\overrightarrow{e_x}`
$ writes :
<br>
<br>
$
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}=l_x\;\overrightarrow{e_x}=dx\;\overrightarrow{e_x}`
$
<br>
<br>
$
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}=
d
l_x\;\overrightarrow{e_x}=dx\;\overrightarrow{e_x}`
$
<br>
<br>
tambien / de même / similarly :
<br>
<br>
tambien / de même / similarly :
<br>
$
`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}=l_y\;\overrightarrow{e_y}=dy\;\overrightarrow{e_y}`
$
<br>
$
`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}=dl_y\;\overrightarrow{e_y}=dy\;\overrightarrow{e_y}`
$
<br>
$
`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}=l_z\;\overrightarrow{e_z}=dz\;\overrightarrow{e_z}`
$
$
`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}=dl_z\;\overrightarrow{e_z}=dz\;\overrightarrow{e_z}`
$
*
**N3 ($`\rightarrow`$ N4)**
<br>
[
ES
]
Los 3 vectores $
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`
$,
$
`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}`
$ y
$
`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}`
$ son 2 a 2 ortogonales.
[
FR
]
Les 3 vecteurs $
`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`
$,
$
`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}`
$ et
$
`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z} sont orthogonaux 2 à 2.
[EN] The 3 vectors $`
\p
artial
\o
verrightarrow{OM}_x=
\o
verrightarrow{dl_x}
`$,
$`
\p
artial
\o
verrightarrow{OM}_y=
\o
verrightarrow{dl_y}
`$ and
$`
\p
artial
\o
verrightarrow{OM}_z=
\o
verrightarrow{dl_z} are 2 to 2 orthogonal.
*
**N3 ($`\rightarrow`$ N4)**
<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-06.
<br>
[
ES
]
Según la dirección elegida, los
**elementos escalares de superficie**
en coordenadas cartesianas son :
<br>
[
FR
]
Selon la direction choisie, les
**éléments scalaires de surface**
en coordonnées cartésiennes sont :
<br>
[
EN
]
According to the chosen direction, the
**scalar surface elements**
in Cartesian coordinates are :
<br>
<br>
$
`dA_{xy}=dl_x\;dly=dx\dy`
$, $
`dA_{xz}=dl_x\;dlz=dx\dz`
$, $
`dA_{yz}=dl_y\;dlz=dy\dz`
$
<br>
<br>
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-07.
<br>
[
ES
]
y los
**elementos vectoriales de superficie**
correspondiente son :
<br>
[
FR
]
et les
**éléments vectoriels de surface**
correspondants sont :
<br>
[
EN
]
and the corresponding
**vector surface elements**
are :
<br>
<br>
$
`d\overrightarrow{dA_{xy}}=\pm\partial\overrightarrow{OM}_x\land\partial\overrightarrow{OM}_y`
$
$
`\pm\overrightarrow{dl_x}\land\overrightarrow{dl_y}`
$
$
`=\pm (dl_x\;\overrightarrow{e_x})\land(dl_y\;\overrightarrow{e_y})`
$
$
`=\pm dl_x\;dl_y\;(\overrightarrow{e_x}\land\overrightarrow{e_y})`
$
$
`= \pm dx\;dy\;\overrightarrow{e_z}`
$
<br>
<br>
$
`d\overrightarrow{dA_{xz}}=\pm\partial\overrightarrow{OM}_x\land\partial\overrightarrow{OM}_z`
$
$
`\pm\overrightarrow{dl_x}\land\overrightarrow{dl_z}`
$
$
`=\pm (dl_x\;\overrightarrow{e_x})\land(dl_z\;\overrightarrow{e_z})`
$
$
`=\pm dl_x\;dl_z\;(\overrightarrow{e_x}\land\overrightarrow{e_z})`
$
$
`=\mp dx\;dy\;\overrightarrow{e_y}`
$
<br>
<br>
$
`d\overrightarrow{dA_{yz}}=\pm\partial\overrightarrow{OM}_y\land\partial\overrightarrow{OM}_z`
$
$
`\pm\overrightarrow{dl_y}\land\overrightarrow{dl_z}`
$
$
`=\pm (dl_y\;\overrightarrow{e_y})\land(dl_z\;\overrightarrow{e_z})`
$
$
`=\pm dl_y\;dl_z\;(\overrightarrow{e_y}\land\overrightarrow{e_z})`
$
$
`=\pm dy\;dz\;\overrightarrow{e_x}`
$
<br>
### Coordenadas cilíndricas / Coordonnées cylindriques / Cylindrical coordinates (N3-N4)
### Coordenadas cilíndricas / Coordonnées cylindriques / Cylindrical coordinates (N3-N4)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment