Commit cfe5464c authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent fa1c7186
Pipeline #14768 canceled with stage
#### Chapter 4
### Metallic waveguides ### Metallic waveguides
<br> <br>
#### 1 - Introduction #### 4.1 - Introduction
We propose to study in this chapter the conditions for propagation of We propose to study in this chapter the conditions for propagation of
elm radiation in conductive rectangular waveguides and to identify the elm radiation in conductive rectangular waveguides and to identify the
...@@ -10,7 +12,7 @@ main char- acteristic of this kind of propagation. We will introduce a ...@@ -10,7 +12,7 @@ main char- acteristic of this kind of propagation. We will introduce a
"practical approach" based on the previous chapter's results. "practical approach" based on the previous chapter's results.
#### 2 - Practical approach #### 4.2 - Practical approach
We have seen in the previous chapter that the oblique incidence of We have seen in the previous chapter that the oblique incidence of
plane waves on planar conductive materials gives rise to an plane waves on planar conductive materials gives rise to an
...@@ -19,7 +21,7 @@ that the resulting wave has propagating character along the z axis ...@@ -19,7 +21,7 @@ that the resulting wave has propagating character along the z axis
and a standing wave pattern along the y axis. and a standing wave pattern along the y axis.
![](TE-and-TM-waves-1_L1200.jpg) ![](TE-and-TM-waves-1_L1200.jpg)
_TE and TM waves and their corresponding standing wave behaviour along the y axis._ _Figure 4.1 : TE and TM waves and their corresponding standing wave behaviour along the y axis._
* For TE modes (TE = transverse-electric) we have : * For TE modes (TE = transverse-electric) we have :
...@@ -112,11 +114,11 @@ simplicity only the case of TE modes. ...@@ -112,11 +114,11 @@ simplicity only the case of TE modes.
![](rectangular_waveguide_with_a_TE_mode.jpg) ![](rectangular_waveguide_with_a_TE_mode.jpg)
_Rectangular waveguide with a TE mode._ _Figure 4.2 : Rectangular waveguide with a TE mode._
<br> <br>
#### 3 $`\mathbf{TE}`$ modes #### 3 TE modes
##### Mode numbering ##### Mode numbering
...@@ -215,7 +217,7 @@ $`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}} ...@@ -215,7 +217,7 @@ $`v_{\varphi}=\dfrac{\omega}{k_z}=\dfrac{c}{\sqrt{1-\frac{\omega_c^2}{\omega^2}}
It is a dispersive medium. It is a dispersive medium.
![](dispersion-relation-for-a-mode_temp_L1200.jpg) ![](dispersion-relation-for-a-mode_temp_L1200.jpg)
_Fig. 4.4: The geometric interpretation of the dispersion._ _Fig. 4.4 : The geometric interpretation of the dispersion._
Similarly we obtain for the group velocity: Similarly we obtain for the group velocity:
...@@ -224,7 +226,7 @@ $`v_{\varphi}=\dfrac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2 ...@@ -224,7 +226,7 @@ $`v_{\varphi}=\dfrac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2
__Geometrical interpretation__ __Geometrical interpretation__
![](geometrical-interpretation-of-the-dispersion_temp_L1200.jpg) ![](geometrical-interpretation-of-the-dispersion_temp_L1200.jpg)
_Fig. 4.5: The geometric interpretation of the dispersion._ _Fig. 4.5 : The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the $`TE`$ wave using a We can understand the propagating behaviour of the $`TE`$ wave using a
simple interpretation: simple interpretation:
...@@ -235,7 +237,7 @@ simple interpretation: ...@@ -235,7 +237,7 @@ simple interpretation:
progression) and $`v_g=0`$. In regions close to $`\omega_c`$ the progression) and $`v_g=0`$. In regions close to $`\omega_c`$ the
waveguides is highly dispersive. waveguides is highly dispersive.
* For $`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c},\theta\longrightarrow\pi/2`$ * For $`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c}\,\theta\longrightarrow\pi/2`$
and $`v_g\longrightarrow c`$. and $`v_g\longrightarrow c`$.
The $`TE`$ waves tends to have very large incidence angles and the guide The $`TE`$ waves tends to have very large incidence angles and the guide
behaves essentially as vacuum, i.e. dispersionless. behaves essentially as vacuum, i.e. dispersionless.
...@@ -247,20 +249,20 @@ simple interpretation: ...@@ -247,20 +249,20 @@ simple interpretation:
<br> <br>
where $`\lambda_z=\lambda / \sin\theta`$ and $`\lambda_y=\lambda / \cos\theta`$, or again where $`\lambda_z=\lambda / \sin\theta`$ and $`\lambda_y=\lambda / \cos\theta`$, or again
<br> <br>
$`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{\2b}\big)^2}`$ $`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{2b}\big)^2}`$
<br> <br>
from which it is easy to confirm (see definition of $`\omega_c`$) that the from which it is easy to confirm (see definition of $`\omega_c`$) that the
cut-off wavelength for a $`TE_{0,n}`$ mode is $`\lambda_c=\frac{2b}{n}`$ cut-off wavelength for a $`TE_{0,n}`$ mode is $`\lambda_c=\frac{2b}{n}`$
![](variation-phase-group-velocity-wersus-omega-guided-mode_temp_L1200.jpg) ![](variation-phase-group-velocity-wersus-omega-guided-mode_temp_L1200.jpg)
_Fig. 4.6: The phase and group velocity variations vs angular frequency for a guided mode._ _Fig. 4.6 : The phase and group velocity variations vs angular frequency for a guided mode._
!!!!! *Exercice 4.1 : Refractive index* !!!!! *Exercice 4.1 : Refractive index*
!!!!! Calculate and plot the refractive index vs the angular frequency for a $`TE`$ wave. !!!!! Calculate and plot the refractive index vs the angular frequency for a $`TE`$ wave.
#### 4. Power flow #### 4.4 - Power flow
The power density (power per unit surface, units $`[W:m^2]`$) The power density (power per unit surface, units $`[W:m^2]`$)
traversing the waveguide can be evaluated from the time-averaged traversing the waveguide can be evaluated from the time-averaged
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment