Commit d21d3da1 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent f380189e
Pipeline #13596 failed with stage
......@@ -459,7 +459,95 @@ $`d\mathcal{P}=n_1\,d\tau\,\mathcal{P}_1=n_1\, q_1\,\overrightarrow{E}\cdot }=\o
#### Pourquoi parlons-nous d'ondes électromagnétiques ?
à faire
##### Equation d'onde
Pour un champ vectoriel $`\overrightarrow{X}(\overrightarrow{r},t)`$, l'équation d'onde de d'Alembert s'écrit :
$`\Delta \overrightarrow{X} - \dfrac{1}{\speed^2} \; \dfrac{\partial^2 \;\overrightarrow{X}}{\partial\; t^2}=0`$
L'expression de l'opérateur Laplacien vectoriel $`\Delta`$ en fonction des opérateurs $`grad`$, $`div`$ et $`rot`$ est :
$`\Delta =\overrightarrow{grad} \left(div\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\right)`$
##### Etude de la composante $`\overrightarrow{E}`$ du champ électromagnétique.
L'idée est de calculer pour chacun des champs $`\overrightarrow{E}`$ et $`\overrightarrow{E}`$
l'expression de son Laplacien, pour voir si une identification avec l'équation d'onde est
réalisée.
Pour établir l'expression $`\;\;\Delta \overrightarrow{E}\;\;`$, je calcule
$`\;\;\overrightarrow{rot}\left(\overrightarrow{rot}\;\overrightarrow{E}\right)\;\;`$ puis
$`\;\;\overrightarrow{grad} \left(div \overrightarrow{E}\right)\;\;`$ à partir des équations
de Maxwell :
* $`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
\overrightarrow{rot} \,\left( -\dfrac{\partial \overrightarrow{B}}{\partial t}\right)`$
<br><br>
En physique classique non relativiste, espace et temps sont découplés. Les coordonnées spatiales
et la coordonnée temporelle sont indépendantes. L'ordre de dérivation ou intégration entre
des coordonnées spatiales et la coordonnés temporelle ne change pas le résultat, donc
je peux écrire :
<br><br>
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
-\dfrac{\partial}{\partial t} \,\left(\overrightarrow{rot}\overrightarrow{B}\right)`$
<br><br>
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)=
-\dfrac{\partial}{\partial t} \,\left(\mu_0\;\overrightarrow{j} +
\mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\right)`$
<br><br>
$`\overrightarrow{rot} \, \left( \overrightarrow{rot}\,\overrightarrow{E} \right)
=-\mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$
<br><br>
* $`\overrightarrow{grad} \left( div \; \overrightarrow{E} \right) = \overrightarrow{grad}\left( \dfrac{\dens}{\epsilon_O} \right)`$
La reconstruction de
$`\Delta \;\overrightarrow{E} =\overrightarrow{grad} \left(div\;\overrightarrow{E}\right) - \overrightarrow{rot}\, \left(\overrightarrow{rot}\;\overrightarrow{E}\right)`$
donne :
$`\Delta \;\overrightarrow{E} = \overrightarrow{grad}\left( \dfrac{\dens}{\epsilon_O} \right) + \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t} +
\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$
ce qui donne par identification au premier terme de l'équation d'onde :
$`\mathbf{\Delta \;\overrightarrow{E}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \dfrac{1}{\epsilon_O} \;
\overrightarrow{grad}\left(\dens \right)+ \mu_0\;\dfrac{\partial \overrightarrow{j}}{\partial t}}`$
_(équation de propagation du champ électrique)_
Une étude de forme identique (proposée en autotest dans la partie beyond) me conduirait
pour le champ magnétique $`\overrightarrow{B}`$ à l'équation de propagation :
$`\mathbf{\Delta \overrightarrow{B}-\epsilon_0\mu_0\;\dfrac{\partial^2 \overrightarrow{B}}
{\partial t^2}=-\mu_0\;\overrightarrow{rot}\;\overrightarrow{j}}`$
_(équation de propagation du champ magnétique)_
##### Équation de propagation dans la matière
...
##### Équation de propagation dans le vide
L'espace vide est caractérisé par une absence de charges, fixes ou en mouvement.
La densité volumique de charge $`\dens_{vide}`$ de même que le vecteur densité volumique de courant
$`\overrightarrow{j}_{vide}`$ ont une valeur nulle dans tout l'espace vide,
$`\dens_{vide}=0\quad\text{et}\quad\overrightarrow{j}_{vide}=\overrightarrow{0}`$.
Dès lors, l'équation de propagation de l'onde électromagnétique dans le vide prend la forme
de l'équation de d'Alembert :
$`\Delta \;\overrightarrow{E}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \overrightarrow{0}`$
$`\Delta \;\overrightarrow{B}-\mu_0 \epsilon_0 \;\dfrac{\partial^2 \overrightarrow{B}}{\partial t^2} = \overrightarrow{0}`$
#### Qu'est-ce que le vecteur de Poynting ?
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment