Commit d632df9f authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 3095b4f6
Pipeline #13839 canceled with stage
...@@ -198,12 +198,6 @@ $`\;=\displaystyle\int_{t_1}^{t_2} ...@@ -198,12 +198,6 @@ $`\;=\displaystyle\int_{t_1}^{t_2}
+\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)`$ +\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)`$
$`\,-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$ $`\,-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
+\dfrac{d}{dt}\bigg(\,\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg)`$
$`\,-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`\;=\displaystyle\int_{t_1}^{t_2} $`\;=\displaystyle\int_{t_1}^{t_2}
\bigg[ \bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i \dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
...@@ -218,13 +212,31 @@ $`\;=\displaystyle\int_{t_1}^{t_2} ...@@ -218,13 +212,31 @@ $`\;=\displaystyle\int_{t_1}^{t_2}
$`+\displaystyle\int_{t_1}^{t_2} $`+\displaystyle\int_{t_1}^{t_2}
\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i`$ \dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i`$
comme s'impose $`\delta x_i(t_1)=\delta x_i(t_2)=0`$ comme s'impose $`\delta x_i(t_1)=\delta x_i(t_2)=0`$, alors
$`displaystyle\int_{t_1}^{t_2}
\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i=0`$
$`\;=\displaystyle\int_{t_1}^{t_2} $`\delta \mathcal{S}=\displaystyle\int_{t_1}^{t_2}
\bigg[ \bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i \dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$ -\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\cdot \delta x_i\bigg]\,dt`$
$`\quad=\displaystyle\int_{t_1}^{t_2}
\bigg[
\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}\bigg]\,\delta x_i\,dt`$
Stationnarité de l'action impose $`\delta \mathcal{S}=0`$
d'où l'équation d'Euler-Lagrange :
$`\dfrac{\partial\mathcal{L}}{\partial x_i}\cdot \delta x_i
-\dfrac{d}{dt}\dfrac{\partial\mathcal{L}}{\partial \dpt{x}_i}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment