Commit d7554324 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 0d8c5123
Pipeline #13296 canceled with stage
...@@ -418,7 +418,7 @@ $`\begin{align} ...@@ -418,7 +418,7 @@ $`\begin{align}
$`\color{brown}{\mathbf{\; = X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}}}`$ $`\color{brown}{\mathbf{\; = X_{\alpha}\,dl_{\alpha}+X_{\beta}\,dl_{\beta}+X_{\gamma}\,dl_{\gamma}}}`$
Par ailleurs,$`\phi`$ étant un champ scalaire, sa différentielle exprimée en fonction des $`(d\alpha\,,d\beta\,,d\gamma)`$ s'écrit : Par ailleurs,$`\phi`$ étant un champ scalaire, sa différentielle exprimée en fonction des $`d\alpha\,,d\beta\,,d\gamma`$ s'écrit :
<!--------------------- <!---------------------
$`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\alpha} + \left.\dfrac{\partial \phi}{\partial \beta}\right|_M\cdot dl_{\beta} + \left.\dfrac{\partial \phi}{\partial \gamma}\right|_M\cdot dl_{\gamma}}`$
...@@ -426,14 +426,14 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\ ...@@ -426,14 +426,14 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\
*$`\mathbf{d\phi}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$ *$`\mathbf{d\phi}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$
$`\mathbf{\;= *$`\;=
\dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\, d\alpha \dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\, \mathbf{d\alpha}
+\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\, d\beta +\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\, \mathbf{d\beta}
+\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\, d\gamma}`$ +\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\, \mathbf{d\gamma}`$*
La comparaison terme à terme de ces deux expressions de $d\phi`$ donne l'expression de
$`\overrightarrow{grad}\,\phi`$ en coordonnées $`(d\alpha\,,d\beta\,,d\gamma)`$ :
$`\;=\,\dfrac{\partial \phi}{\partial dl_{\alpha}}\,\dfrac{\partial dl_{\alpha}}{\partial \alpha}\, d\alpha`$
$`+\dfrac{\partial \phi}{\partial dl_{\beta}}\,\dfrac{\partial dl_{\beta}}{\partial \beta}\, d\beta}
+\dfrac{\partial \phi}{\partial dl_{\gamma}}\,\dfrac{\partial dl_{\gamma}}{\partial \gamma}\, d\gamma}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment