Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
d9cc5824
Commit
d9cc5824
authored
Aug 24, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
796f13c8
Pipeline
#2840
failed with stage
in 23 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
0 deletions
+15
-0
textbook.fr.md
...ent/05.classical-mechanics/vector-analysis/textbook.fr.md
+15
-0
No files found.
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
View file @
d9cc5824
...
@@ -672,6 +672,21 @@ $`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
...
@@ -672,6 +672,21 @@ $`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
\right)`
$
\right)`
$
##### Propongo el siguiente escrito (a discutir) / Je propose l'écriture suivante (à débattre) / I propose the following writing (to be discussed)
En la escritura de una ecuación, vemos con relativa frecuencia vemos el error de tipo :
<br>
Dans l'écriture d'une équation, nous voyons relativement souvent l'erreur de type :
<br>
In the expression of an equation, we relatively often see the type of error :
$
`d ... = \int ... d...`
$
En una parte del curso "Atención" (fondo rojo), tendremos que explicar esto.
<br>
Dans une partie de cours "Attention" (fond rouge), nous devrons expliquer cela.
<br>
In a part of the course "Attention" (red background), we will have to explain this.
$
`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
$
`\displaystyle\dfrac{d\left(\overrightarrow{OM}\right)(t)}{dt}
=\lim_{\Delta t\rightarrow 0}
=\lim_{\Delta t\rightarrow 0}
\left(
\left(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment