Commit dc61c659 authored by Claude Meny's avatar Claude Meny

Deleted...

Deleted 01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/.gitkeep, 01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md, 01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.es.md, 01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.fr.md files
parent 893e7d8e
Pipeline #7384 canceled with stage
---
title: 'Spherical refracting surface in paraxial approximation'
published: false
visible: false
---
### Spherical refracting surface in paraxial approximation.
#### Refracting surface.
A **refracting surface** is a *polished surface between two media with different refractive indexes*.
!!!! *BE CAREFUL* :<br>
!!!! In the same way as we use in English the single word "mirror" to qualify a "reflecting surface", in French is use the single word "dioptre" to qualify a "refracting surface".
!!!! The term "dioptre" in English is a unit of mesure of the vergence of an optical system. In French, the same unit of mesaure is named "dioptrie".
!!!! So keep in mind the following scheme :
!!!!
!!!! refracting surface : *EN : refracting surface* , *ES : superficie refractiva* , *FR : dioptre*.<br>
!!!! _A crystal ball forms a spherical refracting surface : un "dioptre sphérique" in French._
!!!!
!!!! unit of measure : *EN : dioptre* , *ES : dioptría* , *FR : dioptrie*.<br>
!!!! _My corrective lens for both eyes are 4 dioptres : "4 dioptries" in French._
#### Spherical refracting surface.
#### Analytical study of the position and shape of an image.
A **spherical refracting surface** in analytical paraxial optics is defined by *three quantities* :
* **$`n_{ini}`$** : *refractive index of the initial medium* (the medium on the side on the incident light).
* **$`n_{fin}`$** : *refractive index of the final medium* (the medium on the side on the emerging light, after crossing the refracting surface).
* **$`\overline{SC}`$** : the *algebraic distance between the __vertex S__* (sometimes called "pole", is the centre of the aperture) *and the __center of curvature C__* of the refracting surface.
! *USEFUL* : The whole analytic study below also applies to a plane refracting surface. We just need to remark that a plane surface is a spherical surface whose radius of curvature tends towards infinity.
<!--à finir !!!! BE CAREFUL : For a same physical situations, a spherical surface between two transparent media, for optics, ... -->
Consider a *point object* **$`B_{obj}`$** whose orthogonal projection on the optical axis gives the *point object* **$`A_{obj}`$**. If the point object is located on the optical axis, then $`B_{obj}=A_{obj}`$ and we will use to named it point object $`A_{obj}`$. The point object $`B_{obj}`$ can be **real** *as well as* **virtual**.
The **calculation of the position** of the *point image* **$`B_{ima}`$**, *conjugated point of the point object $`B_{obj}`$* by the refracting surface, is carried out in **two steps** :
1. I use the **spherical refracting surface equation** (known too as the **"conjuction equation" for a spherical refracting surface**) to calculate the *position of the point* **$`A_{ima}`$**, $`A_{ima}`$ being the *orthogonal projection on the optical axis of the point image* $`B_{ima}`$.
**$`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$**
To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{obj}}`$**, and the *calculation of the __algebraic distance__* **$`\overline{SA_{ima}}`$** along the optical axis *gives me the position of $`A_{ima}`$*.
<!--conjugación-->
2. I use the **"transverse magnification equation" for a spherical refracting surface**, to calculate the *__algebraic value__ of the transverse magnification* **$`\overline{M_T}`$**, then to derive the *__algebraic length__* **$`\overline{A_{ima}B_{ima}}`$** of the segment $`[A_{ima}B_{ima}]`$, that is the algebraic distance of the point image $`B_{ima}`$ from its orthogonal projection $`A_{ima}`$ on the optical axis.
By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
I know $`\overline{SA_{obj}}`$, $`n_{ini}`$ and $`n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*
!
! * *conjuction equation :*&nbsp;&nbsp; $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$.
!
! * *transverse magnification equation :*&nbsp;&nbsp; $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ &nbsp;&nbsp; (unchanged).
!
! This generalizes and completes the knowledge you get about plane refracting surfaces seen in your pedagogical paths in plain and hills.
#### Graphical study of the position and shape of an image.
---
title: 'Superficie refractaria esférica en aproximación paraxial.'
published: false
visible: false
---
### Superficie refractaria esférica en aproximación paraxial.
#### Superficie refractiva
Una **superficie refractiva** es una *superficie pulida entre dos medios con diferentes índices de refracción*.
!!!! *ATENCIÓN* : <br>
!!!! De la misma manera que usamos en español la palabra "espejo" para calificar una "superficie reflectante", en francés se usa la palabra "dioptre" para calificar una "superficie refractante".
!!!! El término "dioptre" en inglés es la unidad de medida "dioptría" de la vergencia de un sistema óptico. En francés, la misma unidad de mesa se llama "dioptrie".
!!!! Así que ten en cuenta el siguiente esquema:
!!!!
!!!! superficie refractiva: *ES : superficie refractiva* , *FR : dioptre* , *EN : refracting surface*.<br>
!!!! _Una bola de cristal forma una superficie refractiva esférica: un "dioptre sphérique" en francés._
!!!!
!!!! unidad de medida: *ES: dioptría* , *FR: dioptrie* , *EN: dioptre*.<br>
!!!! _Mis lentes correctoras para ambos ojos son 4 dioptrías: "4 dioptries" en francés, y "4 dioptres" en inglés._
#### Superficie refractiva esférica.
#### Estudio analítico de la posición y forma de una imagen.
Una **superficie refractiva esférica** en óptica analítica paraxial se caracteriza por "tres cantidades físicas" :
* **$`n_{ini}`$** : *índice de refracción del medio inicial* (centro ubicado en el lado de la luz incidente).
* **$`n_{fin}`$** : *índice de refracción del medio final * (medio ubicado en el lado de la luz emergente, después de la refracción por la superficie refractiva).
* **$`\overline{SC}`$** : *distancia algebraica entre el __vértice S__* (punto de intersección de la superficie refractiva con su eje óptico, su eje de revolución.)* y el *_centro de curvatura_ C* de la superficie refractiva esférica.
! *IMPORTANTE*: El estudio analítico a continuación también se aplica para una superficie refractiva plana. Basta con señalar que una superficie refractiva plana es una superficie refractiva esférica cuyo radio de curvatura tiende hacia el infinito.
Considera un *punto objeto* **$`B_{obj}`$** cuya proyección ortogonal en el eje óptico da el *punto objeto* **$`A_{obj}`$**. Si el punto del objeto está ubicado en el eje óptico, entonces $`B_{obj}=A_{obj}`$ y lo llamaremos punto objeto $`A_{obj}`$. El punto objeto $`B_{obj}`$ puede ser ambos **real** *y* **virtual**.
El **cálculo de la posición**del *punto imagen* **$`B_ {ima}`$**, *punto conjugado del punto objeto $`B_ {obj}`$* por superficie refractiva esférica, sucede en **dos pasos** :
1. Uso la **relación de conjugación de la superficie refractiva esférica** para calcular la *posición del punto* **$`A_ {ima}`$** , $`A_ {ima}`$ siendo la *proyección ortogonal en el eje óptico del punto de imagen * $`B_{ima}`$.
**$`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$**
Para lograr esto *necesito conocer la _distancia algebraica_* **$`\overline{SA_{obj}}`$**, y el *cálculo de la _distancia algebraica _* **$`\overline{SA_{ima}}`$** a lo largo del eje óptico *me da la posición del punto $`A_{ima}`$*.
2. Utilizo la **expresión de la "magnificación transversal" para una dioptría esférica** para calcular el *__valor algebraico__ de la magnificación transversal* **$` \overline{M_T}`$** *del segmento $`[A_ {obj } B_ {obj}]`$*, luego deduzco la *__longitud algebraica__* **$`\overline {A_{ima}B_ {ima}}`$** del aumento $`[A_ {ima}B_ { ima}]`$, que es la distancia entre el punto imagen $`B_{ima}`$ y su proyección ortogonal en el eje óptico $`A_{ima}`$.
Por *definición :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
Su *expresión para un superficie refractiva esférica* es : **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
Conozco $`\overline{SA_{obj}}`$, $`n_{ini}`$ and $`n_{fin}`$, calculé previamente $`\overline{SA_{ima}}`$, entonces puedo determinar $`\overline{M_T}`$ y deducir $`\overline{A_{ima}B_{ima}}`$
! *IMPORTANTE* : La relación de conjugación y la expresión de la magnificación transversal para una superficie refractiva plana se obtienen fácilmente reescribiendo la relación de conjugación y la expresión e la magnificación transversal para una superficie refractiva esférica en el límite de un radio de curvatura que tiende hacia el infinito : $`|\overline{SC}|\longrightarrow\infty`$.<br> Cela donne *pour un dioptre plan :*
!
! * *relación de conjugación :*&nbsp;&nbsp; $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$.
!
! * *expresión de la magnificación transversal :*&nbsp;&nbsp; $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ &nbsp;&nbsp; (no esta cambiada).
!
! Esto generaliza y completa tu dominio de superficie refractiva plana en comparación con lo que vio en caminos pedagogicos en llanura y colinas.
#### Etude graphique de la position et de la forme d'une image.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment