Commit eee8b904 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.en.md

parent e4fe462f
Pipeline #21620 canceled with stage
......@@ -456,29 +456,29 @@ I recognize here the law of conservation of charge.
$`\text{div}\,\overrightarrow{j} +\dfrac{\partial \dens^{3D}}{\partial t}=0`$
--------------------->
* We can *integrate this local equality* over any volume $`\tau`$:
* We can *integrate this local equality* over any volume $`\tau`$ :
<br>
$`\displaystyle\iiint_{\tau} \Big(\text{div}\,\overrightarrow{j} +\dfrac{\partial \dens}{\partial t}\big)\,d\tau=0`$
$`\displaystyle\iiint_{\tau} \Big(\text{div}\,\overrightarrow{j} +\dfrac{\partial \dens}{\partial t}\big)\,d\tau=0`$
<br>
*$`\displaystyle\iiint_{\tau} \text{div}\,\overrightarrow{j}\,d\tau+\iiint_{\tau}\dfrac{\partial \dens}{\partial t}\,d\tau=0`$*
*$`\displaystyle\iiint_{\tau} \text{div}\,\overrightarrow{j}\,d\tau+\iiint_{\tau}\dfrac{\partial \dens}{\partial t}\,d\tau=0`$*
* The *Divergence Theorem* (= *Gauss's Theorem*) states that for any vector field
$`\overrightarrow{U}`$ and any volume $`\tau`$,
*$`\displaystyle\iiint_{\tau} \text{div}\,\overrightarrow{U}\,d\tau=\oiint_S \overrightarrow{U}\cdot dS`$*,
$`\overrightarrow{U}`$ and any volume $`\tau`$,
*$`\displaystyle\iiint_{\tau} \text{div}\,\overrightarrow{U}\,d\tau=\oiint_S \overrightarrow{U}\cdot dS`$*,
$`S`$ being the closed surface bounding the volume $`\tau`$.
<br>
*Applied to the first term* of the equality, we obtain :
*Applied to the first term* of the equality, we obtain :
<br>
**$`\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} + \iiint_{\tau}\dfrac{\partial \dens}{\partial t}\,d\tau=0`$** .
**$`\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} + \iiint_{\tau}\dfrac{\partial \dens}{\partial t}\,d\tau=0`$**.
* Noting again that *space and time are independent in classical physics*, the order of derivation or integration with respect to a spatial variable and a time variable does not matter:
* Noting again that *space and time are independent in classical physics*, the order of derivation or integration with respect to a spatial variable and a time variable does not matter :
<br>
**$`\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} +\dfrac{\partial}{\partial t} \left(\iiint_{\tau}\dens \,d\tau\right)=0`** .
**$`\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} +\dfrac{\partial}{\partial t} \left(\iiint_{\tau}\dens \,d\tau\right)=0`$**.
* Noting that *$`\displaystyle\iiint_{\tau}\dens^{3D} \,d\tau`$ is the total charge $`Q_{int}`*
contained in the volume $`\tau`$, we obtain the **integral expression of the conservation law** of charge:
* Noting that *$`\displaystyle\iiint_{\tau}\dens^{3D} \,d\tau`$ is the total charge $`Q_{int}`$*
contained in the volume $`\tau`$, we obtain the **integral expression of the conservation law** of charge :
<br>
**$`\mathbf{\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} +\dfrac{dQ_{int}}{dt}=0}`** .
**$`\mathbf{\displaystyle\oiint_S \overrightarrow{j}\cdot \overrightarrow{dS} +\dfrac{dQ_{int}}{dt}=0}`$**.
<br>
......@@ -493,19 +493,19 @@ I recognize here the law of conservation of charge.
* The **sensitivity** of a particle **to electromagnetic interaction** is quantified
by the parameter called *electric charge* of the particle.
* The force that describes the *action of an electromagnetic field $`\big(\overrightarrow{E}, \overrightarrow{B}\big)`*
on a particle with charge $`q`$ is the **Lorentz force**, with the expression:
* The force that describes the *action of an electromagnetic field $`\big(\overrightarrow{E}, \overrightarrow{B}\big)`$*
on a particle with charge $`q`$ is the **Lorentz force**, with the expression :
<br>
**$`\overrightarrow{F}_{Lorentz}=q\Big(\overrightarrow{E}+\overrightarrow{v}\times\overrightarrow{B}\Big)`$**
<br>
&nbsp;&nbsp;where $`\overrightarrow{v}`$ is the velocity vector of the particle in the inertial frame of the observer.
&nbsp;&nbsp;where $`\overrightarrow{v}`$ is the velocity vector of the particle in the inertial frame of the observer.
* *During an elementary displacement $`\overrightarrow{dl}`* of the particle in the electromagnetic field
$`\big(\overrightarrow{E}, \overrightarrow{B}\big)`*, the **work of the Lorentz force** is written as:
* *During an elementary displacement $`\overrightarrow{dl}`$* of the particle in the electromagnetic field
$`\big(\overrightarrow{E}, \overrightarrow{B}\big)`$*, the **work of the Lorentz force** is written as :
<br>
**$`d\mathcal{W}_{Lorentz}=\overrightarrow{F}_{Lorentz}\cdot\overrightarrow{dl}`**,
**$`d\mathcal{W}_{Lorentz}=\overrightarrow{F}_{Lorentz}\cdot\overrightarrow{dl}`**,
<br>
that is,
that is,
<br>
$`\begin{align}
d\mathcal{W}_{Lorentz}&=q\Big(\overrightarrow{E}+\overrightarrow{v}\times\overrightarrow{B}\Big)\cdot\overrightarrow{dl}\\
......@@ -513,14 +513,14 @@ I recognize here the law of conservation of charge.
&= q\Big(\overrightarrow{E}\cdot\overrightarrow{dl}\Big)+ q\Big(\overrightarrow{v}\times\overrightarrow{B}\cdot\overrightarrow{dl}\Big)\\
&\\
&= q\,\overrightarrow{E}\cdot\overrightarrow{dl} + q\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big) \\
\end{align}`$
\end{align}`$
<br>
where $`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)`$ is the scalar triple product of the sequence of the three vectors.
where $`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)`$ is the scalar triple product of the sequence of the three vectors.
* Since the *vectors $`\overrightarrow{v}`$ and $`\overrightarrow{dl}=\overrightarrow{v}\,dt`* are *collinear*, the scalar triple product
is zero:
* Since the *vectors $`\overrightarrow{v}`$ and $`\overrightarrow{dl}=\overrightarrow{v}\,dt`$* are *collinear*, the scalar triple product
is zero :
<br>
*$`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)=0`$*,
*$`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)=0`$*,
!!!!
!!!! <details markdown=1>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment