Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
f0b55e14
Commit
f0b55e14
authored
Oct 09, 2019
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.en.md
parent
7fc2349d
Pipeline
#649
failed with stage
in 21 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
39 additions
and
5 deletions
+39
-5
cheatsheet.en.md
...lements/02.mirror/02.new-course-overview/cheatsheet.en.md
+39
-5
No files found.
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md
View file @
f0b55e14
...
@@ -105,21 +105,55 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
...
@@ -105,21 +105,55 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! The conjunction equation and the transverse magnification equation for a plane mirror
! The conjunction equation and the transverse magnification equation for a plane mirror
! are obtained by rewriting these two equations for a spherical mirror in the limit when
! are obtained by rewriting these two equations for a spherical mirror in the limit when
! $
`|\overline{SC}|\longrightarrow\infty`
$.
! $
`|\overline{SC}|\longrightarrow\infty`
$.
! Then we get for a plane mirror :$
`\overline{SA_{ima}}=\overline{SA_{obj}}`
$ and
! Then we get for a plane mirror :
$
`\overline{SA_{ima}}=\overline{SA_{obj}}`
$ and
! $
`\overline{M_T}=+1`
$.
! $
`\overline{M_T}=+1`
$.
!
*
USEFUL 2° :
<br>
!
*
USEFUL 2° :
<br>
!
*You can find*
the conjunction and the transverse magnification
**
equations for a plane mirror directly from
!
*You can find*
the conjunction and the transverse magnification
**
equations for a plane mirror directly from
! those of the spherical mirror
**
, with the following assumptions :
<br>
<br>
! those of the spherical mirror
**
, with the following assumptions :
<br>
! $
`n_{eme}=-n_{inc}`
$
<br>
<br>
! $
`n_{eme}=-n_{inc}`
$
<br>
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! of propagation reverses after reflection on the mirror)
<br><br>
! of propagation reverses after reflection on the mirror)
<br>
!
! are obtained by rewriting these two equations for a spherical refracting surface in the limit
! are obtained by rewriting these two equations for a spherical refracting surface in the limit
! when $
`|\overline{SC}|\longrightarrow\infty`
$.
! when $
`|\overline{SC}|\longrightarrow\infty`
$.
! Then we get for a plane mirror :
<br>
! Then we get for a plane mirror :
<br>
! $
`\overline{SA_{ima}}=\overline{SA_{obj}}`
$ and $
`\overline{M_T}=+1`
$
! $
`\overline{SA_{ima}}=\overline{SA_{obj}}`
$ and $
`\overline{M_T}=+1`
$
##### Graphical study
*1 - Determining object and image focal points*
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction
equation (equ. 1).
*
Image focal length $
`\overline{OF'}`
$ : $
`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`
$
<br><br>
(equ.1) $
`\Longrightarrow\dfrac{1}{\overline{SF'}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{\overline{SC}}{2}`
$
*
Object focal length $
`\overline{OF}`
$ : $
`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`
$
<br><br>
(equ.2) $
`\Longrightarrow\dfrac{1}{\overline{SF}}=\dfrac{2}{\overline{SC}}\Longrightarrow\overline{SF}=\dfrac{\overline{SC}}{2}`
$
*2 - Thin spherical mirror representation*
*
**Optical axis = revolution axis**
of the mirror, positively
**oriented**
in the direction of propagation of the incident light.
*
Thin spherical mirror equation :
<br><br>
\-
**line segment**
, perpendicular to the optical axis, centered on the axis with symbolic
*
indication of the
direction of curvature
* of the surface at its extremities, and *
dark or hatched area on the non-reflective
side
*
of the mirror.
<br><br>
\-
**vertex S**
, that locates the refracting surface on the optical axis;
<br><br>
\-
**nodal point C = center of curvature**
.
<br><br>
\-
**object focal point F**
and
**image focal point F’**
.
##### Examples of graphical situations, with analytical results to train
*
with
**real objects**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment