Commit f20e51c0 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 69a1870b
Pipeline #14650 canceled with stage
......@@ -79,17 +79,18 @@ RÉSUMÉ<br>
$`\displaystyle\begin{align}
\;\;&\Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
\\
&\Longrightarrow\;\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\
&\Longrightarrow\;\underbrace{\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}}_{\begin{array}{c}
\Primitive \big(\dfrac{dx}{x}\big)\\ =\;ln\,|\,x\,|}=\int_{t_1}^{t_2} r\,dt\\
\\
&\Longrightarrow\;\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}\\
\\
&\Longrightarrow\;\underbrace{ln\,|N(t_2)|-\,ln\,|N(t_1)|}_{\color{blue}{
N>0 \;\Longrightarrow\;|N|\,=\,N}} = r\,(t_2 - t_1)\\
N\,>\,0 \;\Longrightarrow\;|N|\,=\,N}} = r\,(t_2 - t_1)\\
\\
&\Longrightarrow\; ln\,N(t_2) = ln\,N(t_1) + r\,(t_2 - t_1)\\
\\
&\Longrightarrow\; \underbrace{exp\big[ln\,N(t_2)\big]}_{\color{blue}{exp(ln\,x)\;=\;x}}
=\underbrace{exp\big[ln\,N(t_1) + r\,(t_2 - t_1)\big]}_{\color{blue}{exp (a+b)\;=\;exp\,a\;\times\; exp\,b}}\\
&\Longrightarrow\; \underbrace{exp\big[ln\,N(t_2)\big]}_{\color{blue}{exp\,(ln\,x)\;=\;x}}
=\underbrace{exp\big[ln\,N(t_1) + r\,(t_2 - t_1)\big]}_{\color{blue}{exp\,(a+b)\;=\;exp\,a\;\times\; exp\,b}}\\
\\
&\Longrightarrow\; N(t_2)=N(t_1)\,exp\,\big[r\,(t_2 - t_1)\big]\\
\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment