Commit f23ad647 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent dc888426
Pipeline #12806 canceled with stage
...@@ -153,7 +153,7 @@ $`\Longrightarrow`$ ...@@ -153,7 +153,7 @@ $`\Longrightarrow`$
* $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$ * $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big)`$ $`\Longrightarrow \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big)`$
<br>
* $`\left.\begin{array}{l} * $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big) \\ \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \iint_S\Big(-\dfrac{\partial\overrightarrow{B}}{\partial t}\cdot\overrightarrow{dS}\Big) \\
...@@ -162,7 +162,8 @@ $`\Longrightarrow`$ ...@@ -162,7 +162,8 @@ $`\Longrightarrow`$
\end{array}\right\}`$ \end{array}\right\}`$
$`\Longrightarrow`$ $`\Longrightarrow`$
$`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`$ $`\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big)`$
<br> <br>
* $`\left.\begin{array}{l} * $`\left.\begin{array}{l}
\iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big) \\ \iint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = -\dfrac{d}{dt}\Big(\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}\Big) \\
\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{E} \cdot dS = \oint_{\,\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} \iint_{S} \;\overrightarrow{rot}\;\overrightarrow{E} \cdot dS = \oint_{\,\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
...@@ -171,8 +172,8 @@ $`\Longrightarrow`$ ...@@ -171,8 +172,8 @@ $`\Longrightarrow`$
**$`\begin{array}{l} **$`\begin{array}{l}
&nbsp; \\ &nbsp; \\
\mathbf{\displaystyle\quad\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}= -\dfrac{d}{dt}\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}} \mathbf{\displaystyle\quad\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}= -\dfrac{d}{dt}\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}}
\end{array}`$** \end{array}`$**
<br> <br>
* Cette équation joue un *rôle important pour les phénomènes d'induction*. * Cette équation joue un *rôle important pour les phénomènes d'induction*.
_La quantité_ $`\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$ _La quantité_ $`\oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$
_d'appelation historique imparfaite "force électromotrice (fem)", homogène à une tension, est à l'origine à un courant_ _d'appelation historique imparfaite "force électromotrice (fem)", homogène à une tension, est à l'origine à un courant_
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment