Commit f3a485e4 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 677df178
Pipeline #19534 canceled with stage
......@@ -42,3 +42,38 @@ div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=\; &\dfrac{1}{r
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
-->
### L'opérateur rotationnel
##### Expression du rotationnel en coordonnées cartésiennes
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\,=\,\color{gray}{\dfrac{d\Phi_X}{d\tau}}\,=\,\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}}`$**
##### Expression du rotationnel en coordonnées cylindriques
<br>**$`\boldsymbol{\mathbf{div\,\overrightarrow{X}\,\color{gray}{=\,\dfrac{d\Phi_X}{d\tau}}\,=\,\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
<!--
<br>**$`div\,\overrightarrow{X}\;\color{gray}{=\;\dfrac{d\Phi_X}{d\tau}}\;=\;\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}`$**
-->
##### Expression du rotationnel en coordonnées sphériques
<br>**$`\boldsymbol{d\mathbf{iv\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=
\; \dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}}}`$**
**$`\hspace{4.5cm}\boldsymbol{\mathbf{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}}}`$**
**$`\hspace{6.2cm}\boldsymbol{\mathbf{+ \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}}}`$**
<!--
<br>**$`\mathbf{\boldsymbol{\begin{align}
div\,\overrightarrow{X}\color{gray}{\;=\dfrac{d\Phi_X}{d\tau}}\,=\; &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r)}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}\end{align}}}`$**
-->
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment