Commit f4dcd2e7 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent c96604e9
Pipeline #13573 canceled with stage
......@@ -123,11 +123,13 @@ visible: false
d'un vecteur $`\overrightarrow{U}`$ **en coordonnées cartésiennes** est :
<br>
**$`\overrightarrow{\Delta}=
\left(\begin{array}{l}
\dfrac{\partial^2 U_x}}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial y^2}+\dfrac{\partial^2 U_x}{\partial z^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial y^2}+\dfrac{\partial^2 U_y}{\partial z^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial y^2}+\dfrac{\partial^2 U_z}{\partial z^2
\end{array}\right)`$**
\left(
\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2} + \dfrac{\partial^2 U_x}{\partial y^2} + \dfrac{\partial^2 U_x}{\partial z^2}\\
\dfrac{\partial^2 U_y}{\partial x^2} + \dfrac{\partial^2 U_y}{\partial y^2} + \dfrac{\partial^2 U_y}{\partial z^2}\\
\dfrac{\partial^2 U_z}{\partial x^2} + \dfrac{\partial^2 U_z}{\partial y^2} + \dfrac{\partial^2 U_z}{\partial z^2
\end{array}
\right)`$**
<br>
......@@ -354,6 +356,11 @@ constitue la **définition de l'opérateur laplacien vectoriel** :
**$`\large{\overrightarrow{\Delta}=\overrightarrow{grad}\big(div\;\overrightarrow{U}\big)
-\overrightarrow{rot}\big(\overrightarrow{rot}\,\overrightarrow{U}\big)}`$**
<br>
----------------------------------
<br>
##### 4 - Relation entre les propriétés locales d'un champ vectoriel et sa propagation
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment