Commit f74c9926 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent e4ca9207
Pipeline #17587 canceled with stage
...@@ -119,6 +119,16 @@ $`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{ ...@@ -119,6 +119,16 @@ $`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{
$`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A} $`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A}
}{\partial t}\right)=\overrightarrow{0}`$ }{\partial t}\right)=\overrightarrow{0}`$
$`\quad = A\cdot
\;\underbrace{cos \Big[\,\Big(\omega t - \vec{k}\cdot\vec{r} + \varphi'\Big) - \dfrac{\pi}{2}}_{\color{blue}{cos(a-\pi/2)\\\;=cos(a)\,cos(\pi/2)+sin(a)\,sin(\pi/2)\\=\;sin(a)}}\Big]`$
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br> <br>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment