Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
f7d12128
Commit
f7d12128
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
24bd2a68
Pipeline
#14809
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
9 deletions
+14
-9
textbook.fr.md
...-interfaces/10.boundary-conditions/10.main/textbook.fr.md
+14
-9
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/10.boundary-conditions/10.main/textbook.fr.md
View file @
f7d12128
...
...
@@ -143,16 +143,15 @@ or again
i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written:
@@@@@@@@@@ $`
\q
uad equ. 3.16)
`$
@@@@@@@@@@ $`
\q
uad
(
equ. 3.16)
`$
__
H
vector__
__
$`
\o
verrightarrow{H}
`$
vector__
Following the same reasoning as for the $`
\o
verrightarrow{E}
`$ vector we write for the
left hand side when $`
\d
elta
\r
ight 0
`$ :
left hand side when $`
\d
elta
\r
ight
arrow
0
`$ :
$`
\o
verrightarrow{H}
`$
@@@@@@@@@@@@@ $`
\q
uad equ. 3.17)
`$
@@@@@@@@@@@@@ $`
\q
uad
(
equ. 3.17)
`$
The right hand side needs more attention. The flux of the vector $`
\o
verrightarrow{D}
`$
approaches 0. However the flux of the vector $`
\o
verrightarrow{J}
`$ over an infinitesimal surface
...
...
@@ -164,20 +163,24 @@ not $`[A/m*^2]`$ as $`\overrightarrow{J}`$) can. This is typically the case of a
perfect conductor where a finite current can flow through a
infinitesimally small area. We get:
@@@@@@@@ $`
\q
uad equ. 3.18)
`$
@@@@@@@@ $`
\q
uad
(
equ. 3.18)
`$
or again
@@@@@@@@ $`
\q
uad equ. 3.19)
`$
@@@@@@@@ $`
\q
uad
(
equ. 3.19)
`$
i.e. the tangential components of the magnetic field $`
\o
verrightarrow{H}
`$ is
discontinuous unless no surface currents exist. As for the electric
field, this condition can also be written:
@@@@@@@@ $`
\q
uad equ. 3.20)
`$
@@@@@@@@ $`
\q
uad
(
equ. 3.20)
`$
!! *Summary*
!!
!! *vector form*
!! * @@@@@
!! * @@@@@
! *Remarks*
!
...
...
@@ -192,10 +195,12 @@ field, this condition can also be written:
!
! * In case of linear media, the 4 relations can be expressed in terms
! of $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$ alone using the constitutive relations
! $`
\o
verrightarrow{D}=
\e
psilon
\,
$
`\overrightarrow{E}`
$ and $
`\overrightarrow{B}=\mu\,$`
\o
verrightarrow{H}
`$.
! $`
\o
verrightarrow{D}=
\e
psilon
\,
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}=
\m
u
\,
\o
verrightarrow{H}
`$.
&&&&&&&&&&&&&&&&&&&&&&&&&
<br><br>
#### chap2 Reflection and transmission at normal incidence
We suppose that the *xy* plane at *z* = 0 is the boundary between
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment