Commit f7d12128 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 24bd2a68
Pipeline #14809 canceled with stage
...@@ -143,16 +143,15 @@ or again ...@@ -143,16 +143,15 @@ or again
i.e. the tangential components of the electric field are always i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written: conserved at the interface. This condition can also be written:
@@@@@@@@@@ $`\quad equ. 3.16)`$ @@@@@@@@@@ $`\quad (equ. 3.16)`$
__H vector__ __$`\overrightarrow{H}`$ vector__
Following the same reasoning as for the $`\overrightarrow{E}`$ vector we write for the Following the same reasoning as for the $`\overrightarrow{E}`$ vector we write for the
left hand side when $`\delta\right 0`$ : left hand side when $`\delta\rightarrow 0`$ :
$`\overrightarrow{H}`$
@@@@@@@@@@@@@ $`\quad equ. 3.17)`$ @@@@@@@@@@@@@ $`\quad (equ. 3.17)`$
The right hand side needs more attention. The flux of the vector $`\overrightarrow{D}`$ The right hand side needs more attention. The flux of the vector $`\overrightarrow{D}`$
approaches 0. However the flux of the vector $`\overrightarrow{J}`$ over an infinitesimal surface approaches 0. However the flux of the vector $`\overrightarrow{J}`$ over an infinitesimal surface
...@@ -164,20 +163,24 @@ not $`[A/m*^2]`$ as $`\overrightarrow{J}`$) can. This is typically the case of a ...@@ -164,20 +163,24 @@ not $`[A/m*^2]`$ as $`\overrightarrow{J}`$) can. This is typically the case of a
perfect conductor where a finite current can flow through a perfect conductor where a finite current can flow through a
infinitesimally small area. We get: infinitesimally small area. We get:
@@@@@@@@ $`\quad equ. 3.18)`$ @@@@@@@@ $`\quad (equ. 3.18)`$
or again or again
@@@@@@@@ $`\quad equ. 3.19)`$ @@@@@@@@ $`\quad (equ. 3.19)`$
i.e. the tangential components of the magnetic field $`\overrightarrow{H}`$ is i.e. the tangential components of the magnetic field $`\overrightarrow{H}`$ is
discontinuous unless no surface currents exist. As for the electric discontinuous unless no surface currents exist. As for the electric
field, this condition can also be written: field, this condition can also be written:
@@@@@@@@ $`\quad equ. 3.20)`$ @@@@@@@@ $`\quad (equ. 3.20)`$
!! *Summary* !! *Summary*
!! !!
!! *vector form*
!! * @@@@@
!! * @@@@@
! *Remarks* ! *Remarks*
! !
...@@ -192,10 +195,12 @@ field, this condition can also be written: ...@@ -192,10 +195,12 @@ field, this condition can also be written:
! !
! * In case of linear media, the 4 relations can be expressed in terms ! * In case of linear media, the 4 relations can be expressed in terms
! of $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ alone using the constitutive relations ! of $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ alone using the constitutive relations
! $`\overrightarrow{D}=\epsilon\,$`\overrightarrow{E}`$ and $`\overrightarrow{B}=\mu\,$`\overrightarrow{H}`$. ! $`\overrightarrow{D}=\epsilon\,\overrightarrow{E}`$ and $`\overrightarrow{B}=\mu\,\overrightarrow{H}`$.
&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&
<br><br>
#### chap2 Reflection and transmission at normal incidence #### chap2 Reflection and transmission at normal incidence
We suppose that the *xy* plane at *z* = 0 is the boundary between We suppose that the *xy* plane at *z* = 0 is the boundary between
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment