Commit f7d12128 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 24bd2a68
Pipeline #14809 canceled with stage
......@@ -143,16 +143,15 @@ or again
i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written:
@@@@@@@@@@ $`\quad equ. 3.16)`$
@@@@@@@@@@ $`\quad (equ. 3.16)`$
__H vector__
__$`\overrightarrow{H}`$ vector__
Following the same reasoning as for the $`\overrightarrow{E}`$ vector we write for the
left hand side when $`\delta\right 0`$ :
left hand side when $`\delta\rightarrow 0`$ :
$`\overrightarrow{H}`$
@@@@@@@@@@@@@ $`\quad equ. 3.17)`$
@@@@@@@@@@@@@ $`\quad (equ. 3.17)`$
The right hand side needs more attention. The flux of the vector $`\overrightarrow{D}`$
approaches 0. However the flux of the vector $`\overrightarrow{J}`$ over an infinitesimal surface
......@@ -164,20 +163,24 @@ not $`[A/m*^2]`$ as $`\overrightarrow{J}`$) can. This is typically the case of a
perfect conductor where a finite current can flow through a
infinitesimally small area. We get:
@@@@@@@@ $`\quad equ. 3.18)`$
@@@@@@@@ $`\quad (equ. 3.18)`$
or again
@@@@@@@@ $`\quad equ. 3.19)`$
@@@@@@@@ $`\quad (equ. 3.19)`$
i.e. the tangential components of the magnetic field $`\overrightarrow{H}`$ is
discontinuous unless no surface currents exist. As for the electric
field, this condition can also be written:
@@@@@@@@ $`\quad equ. 3.20)`$
@@@@@@@@ $`\quad (equ. 3.20)`$
!! *Summary*
!!
!! *vector form*
!! * @@@@@
!! * @@@@@
! *Remarks*
!
......@@ -192,10 +195,12 @@ field, this condition can also be written:
!
! * In case of linear media, the 4 relations can be expressed in terms
! of $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ alone using the constitutive relations
! $`\overrightarrow{D}=\epsilon\,$`\overrightarrow{E}`$ and $`\overrightarrow{B}=\mu\,$`\overrightarrow{H}`$.
! $`\overrightarrow{D}=\epsilon\,\overrightarrow{E}`$ and $`\overrightarrow{B}=\mu\,\overrightarrow{H}`$.
&&&&&&&&&&&&&&&&&&&&&&&&&
<br><br>
#### chap2 Reflection and transmission at normal incidence
We suppose that the *xy* plane at *z* = 0 is the boundary between
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment