Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
fa1c7186
Commit
fa1c7186
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
685d3c1b
Pipeline
#14767
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
31 deletions
+30
-31
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+30
-31
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
fa1c7186
...
...
@@ -116,7 +116,7 @@ _Rectangular waveguide with a TE mode._
<br>
#### $`\mathbf{TE}`$ modes
####
3
$`\mathbf{TE}`$ modes
##### Mode numbering
...
...
@@ -219,7 +219,7 @@ _Fig. 4.4: The geometric interpretation of the dispersion._
Similarly we obtain for the group velocity:
$
`v_{\varphi}=\drac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`
$
$
`v_{\varphi}=\d
f
rac{\partial \omega}{\partial k_z}=c\,\sqrt{1-\dfrac{\omega_c^2}{\omega^2}}`
$
__Geometrical interpretation__
...
...
@@ -229,49 +229,48 @@ _Fig. 4.5: The geometric interpretation of the dispersion._
We can understand the propagating behaviour of the $
`TE`
$ wave using a
simple interpretation:
-
For
*ω*
=
*ω~c~*
,
*k~z~*
=
*k*
sin
*θ*
=0. This implies
*θ*
= 0. The
wave is doing a normal incidence on the plates (no
*z*
progression) and
*v~g~*
= 0. In regions close to
*ω~c~*
the
*
For $
`\omega=\omega_c\,, k_z=k\,\sin\theta = 0`
$.
This implies $
`\theta=0`
$. The
wave is doing a normal incidence on the plates (no $
`z`
$
progression) and $
`v_g=0`
$. In regions close to $
`\omega_c`
$ the
waveguides is highly dispersive.
-
For
*ω*
,
*k~z~ ^[ω]{.underline}^*
,
*θ π/*
2 and
*v~g~ c*
. The TE
waves tends to have very large incidence angles and the guide
behaves essentially as vacuum,
*
For $
`\omega\longrightarrow\infty\,,k_z\longrightarrow\frac{\omega}{c}•,\theta\longrightarrow\pi/2`
$
and $
`v_g\longrightarrow c`
$.
The $
`TE`
$ waves tends to have very large incidence angles and the guide
behaves essentially as vacuum, i.e. dispersionless.
i.e. dispersionless.
*
We can rewrite the dispersion relation for a $
`TE_{0,n}`
$ mode using
wavelengths. Eq
[
4.5
]
becomes:
<br>
$
`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{1}{\lambda_y}\big)^2}`
$
<br>
where $
`\lambda_z=\lambda / \sin\theta`
$ and $
`\lambda_y=\lambda / \cos\theta`
$, or again
<br>
$
`\dfrac{1}{\lambda_z}=\sqrt{\big(\dfrac{1}{\lambda}\big)^2-\big(\dfrac{n}{\2b}\big)^2}`
$
<br>
from which it is easy to confirm (see definition of $
`\omega_c`
$) that the
cut-off wavelength for a $
`TE_{0,n}`
$ mode is $
`\lambda_c=\frac{2b}{n}`
$
-
We can rewrite the dispersion relation for a TE~0
*,n*
~ mode using
wave- lengths. Eq
[
4.5
](
#_bookmark83
)
becomes:

_Fig. 4.6: The phase and group velocity variations vs angular frequency for a guided mode._
1 = 1 2
!!!!!
*Exercice 4.1 : Refractive index*
!!!!! Calculate and plot the refractive index vs the angular frequency for a $
`TE`
$ wave.
1 2 (4.8)
*λ~z~*
V
*λ*
−
*λy*
>
where
*λ~z~*
=
*λ/*
sin
*θ*
and
*λ~y~*
=
*λ/*
cos
*θ*
, or again
#### 4. Power flow
The power density (power per unit surface, units $
`[W:m^2]`
$)
traversing the waveguide can be evaluated from the time-averaged
Poynting vector :
1 = 1 2
*n*
2 (4.9)
>
from which it is easy to confirm (see definition of
*ω~c~*
) that the
cut-off wavelength for a TE~0
*,n*
~ mode is
*λ~c~*
=
[
2*b*
]
{.underline}
.


{width="0.12802602799650042in"
height="9.562445319335083e-2in"}Figure 4.6: The phase and group
velocity variations vs angular frequency for a guided mode.
chap2 Power flow
The power density (power per unit surface, units
\[
*W/m*
^2^
\]
)
traversing the waveguide can be evaluated from the time-averaged
Poynting vector
>
(
**P**
) = (
[
$`\overrightarrow{E}`$ × $`\overrightarrow{B}`$
]
{.underline} )
*.*
(4.10)
>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment