Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
ffc5ce39
Commit
ffc5ce39
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
4b97b5bb
Pipeline
#14762
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
85 deletions
+19
-85
textbook.fr.md
...-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
+19
-85
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/20.metallic-waveguides/10.main/textbook.fr.md
View file @
ffc5ce39
...
...
@@ -165,100 +165,34 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$.
*
The wave is propagating along the $
`z`
$-axis and it is the __nature of__ $
`k_z`
$
which defines the type of propagation.
In summary, for $
`TE`
$ waves:
>
⇒ Existence of a cut-off frequency. The dispersion relation is:
In summary, for $
`TE`
$ waves:
$
`\Longrightarrow`
$ Existence of a cut-off frequency. The dispersion relation is:
*k~z~*
=
*
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`
$ for a $
`TE_{0,n}`
$ mode.
*ω*
2
>
*c*
2 −
>
*π*
2
*n*
2 for a TE mode
>
*b*
*
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 m^2}{a^2}}`
$ for a $
`TE_{m,0}`
$ mode.
*k~z~*
=
*
$
`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}-\dfrac{\pi^2 m^2}{a^2}}`
$ for a $
`TE_{m,n}`
$ mode.
We have for:
>
*k~z~*
=
>
*ω*
2
>
*c*
2 −
*ω*
2
*
*
a $
`TE_{0,n}`
$ mode :
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
$
`\quad\Longrightarrow`
$ propagation without absorption for mode $
`TE_{0,n}`
$.
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
$
`\quad\Longrightarrow`
$ evanescent wave for mode $
`TE_{0,n}`
$.
*
*
a $
`TE_{0,n}`
$ mode :
*
if $
`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`
$
$
`\quad\Longrightarrow`
$ propagation without absorption for mode $
`TE_{0,n}`
$.
*
if $
`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`
$
$
`\quad\Longrightarrow`
$ evanescent wave for mode $
`TE_{0,n}`
$.
*c*
2 −
*π*
2
*n*
2
*b*
2 −
>
*π*
2
*m*
2 for a TE mode
>
*a*
>
*π*
2
*m*
2 for a TE mode
>
*a*
>
**a TE**
~0
*,n*
~
**mode**
>
if
*ω \ω~c~*
>
if
*ω \< ω~c~*
>
=
*[nπc]{.underline}*
>
*b*
>
=
*[nπc]{.underline}*
>
*b*
>
→
*k~z~*
>
→
*k~z~*
>
∈ Re → Propagation without absorption for mode TE~
*n,*
0~
>
∈ Im → Evanescent wave for mode TE~0
*,n*
~
>
**a TE**
~0
*,n*
~
**mode**
>
if
*ω \ω~c~*
>
if
*ω \< ω~c~*
>
=
*[mπc]{.underline}*
>
*a*
>
=
*[mπc]{.underline}*
>
*a*
>
→
*k~z~*
>
→
*k~z~*
>
∈ Re → Propagation without absorption for mode TE~
*m,*
0~
>
∈ Im → Evanescent wave for mode TE~
*m,*
0~
>
**a TE**
*~m,n~*
**mode**
>
if =
*mπc*
2 +
*nπc*
2
>
Re Propagation without absorption for mode TE
>
if =
*mπc*
2 +
*nπc*
2
>
Re Evanescent wave for mode TE
>
where
*ω~c~*
is the cut-off angular frequency. So we can propagate and
ELM wave as a TE wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment