Commit ffc5ce39 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 4b97b5bb
Pipeline #14762 canceled with stage
......@@ -165,100 +165,34 @@ with $`k=\sqrt{k_x^2+k_y^2+k_z^2}`$.
* The wave is propagating along the $`z`$-axis and it is the __nature of__ $`k_z`$
which defines the type of propagation.
In summary, for $`TE`$ waves:
>
⇒ Existence of a cut-off frequency. The dispersion relation is:
In summary, for $`TE`$ waves:
$`\Longrightarrow`$ Existence of a cut-off frequency. The dispersion relation is:
*k~z~* =
* $`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}}`$ for a $`TE_{0,n}`$ mode.
*ω*2
>
*c*2 −
>
*π*2*n*2 for a TE mode
>
*b*
* $`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 m^2}{a^2}}`$ for a $`TE_{m,0}`$ mode.
*k~z~* =
* $`k_z=\sqrt{\dfrac{\omega^2}{c^2}-\dfrac{\pi^2 n^2}{b^2}-\dfrac{\pi^2 m^2}{a^2}}`$ for a $`TE_{m,n}`$ mode.
We have for:
>
*k~z~* =
>
*ω*2
>
*c*2 −
*ω*2
* *a $`TE_{0,n}`$ mode :
* if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$
$`\quad\Longrightarrow`$ propagation without absorption for mode $`TE_{0,n}`$.
* if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$
$`\quad\Longrightarrow`$ evanescent wave for mode $`TE_{0,n}`$.
* *a $`TE_{0,n}`$ mode :
* if $`\omega\gt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{R}e`$
$`\quad\Longrightarrow`$ propagation without absorption for mode $`TE_{0,n}`$.
* if $`\omega\lt\omega_c=\dfrac{n\pi c}{b}\;\Longrightarrow\;k_z\in\mathscr{I}m`$
$`\quad\Longrightarrow`$ evanescent wave for mode $`TE_{0,n}`$.
*c*2 −
*π*2*n*2
*b*2 −
>
*π*2*m*2 for a TE mode
>
*a*
>
*π*2*m*2 for a TE mode
>
*a*
>
**a TE**~0*,n*~ **mode**
>
if *ω \ω~c~*
>
if *ω \< ω~c~*
>
= *[nπc]{.underline}*
>
*b*
>
= *[nπc]{.underline}*
>
*b*
>
*k~z~*
>
*k~z~*
>
∈ Re → Propagation without absorption for mode TE~*n,*0~
>
∈ Im → Evanescent wave for mode TE~0*,n*~
>
**a TE**~0*,n*~ **mode**
>
if *ω \ω~c~*
>
if *ω \< ω~c~*
>
= *[mπc]{.underline}*
>
*a*
>
= *[mπc]{.underline}*
>
*a*
>
*k~z~*
>
*k~z~*
>
∈ Re → Propagation without absorption for mode TE~*m,*0~
>
∈ Im → Evanescent wave for mode TE~*m,*0~
>
**a TE***~m,n~* **mode**
>
if = *mπc* 2 + *nπc* 2
>
Re Propagation without absorption for mode TE
>
if = *mπc* 2 + *nπc* 2
>
Re Evanescent wave for mode TE
>
where *ω~c~* is the cut-off angular frequency. So we can propagate and
ELM wave as a TE wave in rectangular waveguides only for frequencies
larger than the cut-off one: the waveguide acts as a high-pass filter.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment