Commit 0c61ee58 authored by Claude Meny's avatar Claude Meny

Update textbook.es.md

parent 7815a37a
...@@ -241,10 +241,10 @@ $`dl=\sqrt{dx^2+dy^2+dz^2}`$ , **$`\mathbf{dl=\sqrt{dx^2+dy^2+dz^2}}`$** ...@@ -241,10 +241,10 @@ $`dl=\sqrt{dx^2+dy^2+dz^2}`$ , **$`\mathbf{dl=\sqrt{dx^2+dy^2+dz^2}}`$**
Lorsque seule la coordonnées $`x`$ d'un point $`M(x,y,z)`$ s'accroît de façon Lorsque seule la coordonnées $`x`$ d'un point $`M(x,y,z)`$ s'accroît de façon
infinitésimale entre les valeurs $`x`$ et $`x+dx`$ ($`dx>0`$), le vecteur déplacement infinitésimale entre les valeurs $`x`$ et $`x+dx`$ ($`dx>0`$), le vecteur déplacement
$`\overrightarrow{MM'}=\partial\overrightarrow{OM}_x`$ du point $`M`$ est le vecteur $`\overrightarrow{MM'}=d\overrightarrow{OM}_x`$ du point $`M`$ est le vecteur
tangent à la trajectoire au point $`M`$ qui sc'écrit : tangent à la trajectoire au point $`M`$ qui sc'écrit :
$`\overrightarrow{MM'}=\partial\overrightarrow{OM}_x=\dfrac{\partial \overrightarrow{OM}}{\partial x}\cdot dx`$ $`\overrightarrow{MM'}=d\overrightarrow{OM}_x=\dfrac{\partial \overrightarrow{OM}}{\partial x}\cdot dx`$
Le vecteur unitaire tangent à la trajectoire $`\overrightarrow{e_x}`$ (qui indique la direction et le sens Le vecteur unitaire tangent à la trajectoire $`\overrightarrow{e_x}`$ (qui indique la direction et le sens
de déplacement du point M lorsque seule la coordonnée x croît de façon infinitésimale) s'écrit : de déplacement du point M lorsque seule la coordonnée x croît de façon infinitésimale) s'écrit :
...@@ -253,9 +253,9 @@ $`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrigh ...@@ -253,9 +253,9 @@ $`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrigh
de même : de même :
$`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$, $`d\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$,
$`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$<br> $`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$<br>
$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$, $`d\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$,
$`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$ $`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$
...@@ -263,7 +263,7 @@ $`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\ove ...@@ -263,7 +263,7 @@ $`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\ove
* *CS180* * *CS180*
Les vecteurs déplacement élémentaire $`\partial\overrightarrow{OM}_x , \partial\overrightarrow{OM}_y , \partial\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$. Les vecteurs déplacement élémentaire $`d\overrightarrow{OM}_x , d\overrightarrow{OM}_y , d\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$ Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$
forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes. forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes.
...@@ -287,7 +287,7 @@ En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<b ...@@ -287,7 +287,7 @@ En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<b
\- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br> \- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br>
\- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression \- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br> $`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
Les composantes d'un vecteur position sont appelées coordonnées, $x, y, z`$ sont les coordonnées cartésiennes du point $`M`$. Les composantes d'un vecteur position sont appelées coordonnées, $`x, y, z`$ sont les coordonnées cartésiennes du point $`M`$.
------------------ ------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment