Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
test-regular-2
Courses
Commits
21a912bc
Commit
21a912bc
authored
Aug 12, 2020
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
a8ec7fd1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
textbook.fr.md
...ent/05.classical-mechanics/vector-analysis/textbook.fr.md
+2
-2
No files found.
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
View file @
21a912bc
...
@@ -178,10 +178,10 @@ la posición de cualquier punto M se puede definir de forma única mediante
...
@@ -178,10 +178,10 @@ la posición de cualquier punto M se puede definir de forma única mediante
**3 números reales $`(\alpha_M, \beta_M, \gamma_M )`$**
, llamados
** coordenadas **
(o coordenadas espaciales)
**3 números reales $`(\alpha_M, \beta_M, \gamma_M )`$**
, llamados
** coordenadas **
(o coordenadas espaciales)
del punto M. Escribimos $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
<br>
del punto M. Escribimos $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
<br>
[
FR
]
L’
*espace classique de Newton*
a
**3 dimensions**
. Cela signifie que, à partir de l’origine O de l’espace,
[
FR
]
L’
*espace classique de Newton*
a
**3 dimensions**
. Cela signifie que, à partir de l’origine O de l’espace,
la position de tout point M peut-être définie de façon unique par
**3 nombres réels
**
$
`(\alpha_M, \beta_M, \gamma_M )`
$
**
la position de tout point M peut-être définie de façon unique par
**3 nombres réels
$`(\alpha_M, \beta_M, \gamma_M )`$**
, appelés
**coordonnées**
(ou coordonnées spatiales) du point M. On écrit $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
<br>
, appelés
**coordonnées**
(ou coordonnées spatiales) du point M. On écrit $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
<br>
[
EN
]
The Newton's
*classical space*
has
**3 dimensions**
. This means that, from the origin O of space,
[
EN
]
The Newton's
*classical space*
has
**3 dimensions**
. This means that, from the origin O of space,
the position of any point M can be uniquely defined by
**3 real numbers
**
$
`(\alpha_M, \beta_M, \gamma_M )`
$
**
,
the position of any point M can be uniquely defined by
**3 real numbers
$`(\alpha_M, \beta_M, \gamma_M )`$**
,
called
**coordinates**
(or spatial coordinates) of point M. We write $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
called
**coordinates**
(or spatial coordinates) of point M. We write $
`M=M(\alpha_M, \beta_M, \gamma_M)`
$.
*
[
ES
]
Hay
*varias formas posibles de definir unas coordenadas espaciales*
: Hablamos de
*
[
ES
]
Hay
*varias formas posibles de definir unas coordenadas espaciales*
: Hablamos de
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment