Commit a95f6a10 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 83f8e2a3
...@@ -144,8 +144,13 @@ est l'ensemble formé par un point $`O`$ origine des coordonnées et une base v ...@@ -144,8 +144,13 @@ est l'ensemble formé par un point $`O`$ origine des coordonnées et une base v
En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<br> En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<br>
\- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br> \- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br>
\- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression \- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br> $`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$
Les composantes d'un vecteur position sont appelées coordonnées, $x, y, z`$ sont les coordonnées cartésiennes du point $`M`$. dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
! *Remarque :*
! En coordonnées cartésiennes, et *uniquement en coordonnées cartésiennes*, les composantes du vecteur
position $`\overrightarrow{OM}`$ de tout point $`M`$ sont ses coordonnées cartésiennes.<br>
! Cela n'est pas vraie dans les autre systèmes de coordonnées.
Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br> Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br>
$`\overrightarrow{G}=G_x\;\overrightarrow{e_x}+G_y\;\overrightarrow{e_y}+G_z\;\overrightarrow{e_z}`$.<br> $`\overrightarrow{G}=G_x\;\overrightarrow{e_x}+G_y\;\overrightarrow{e_y}+G_z\;\overrightarrow{e_z}`$.<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment