Commit 09273f38 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 4cd8d121
Pipeline #14773 canceled with stage
......@@ -276,52 +276,26 @@ Let's consider a $`TE_{0,n}`$ mode as described by equations
$`k\,\cos\theta=k_y=n\pi/b`$ and $`k\,\sin\theta=k_z`$. We get
$`\overrightarrow{E}_{\perp}=`$$`E_0\,\sin\Big(\dfrac{n\pi}{b}\,y\Big)\,\sin(k_z\,z-\omega\,t})\overrightarrow{e_x}`$
$`\quad(eq. 4.11)`$
and
$`\overrightarrow{B}_{\perp}=`$
$`\left(\begin{array}{l}
0\\
\dfrac{E_0}{c}\dfrac{k_z}{k}\sin\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)\\
\dfrac{E_0}{c}\dfrac{n\pi}{b\,k}\cos\big(\frac{n\pi}{b}\,y\big)\sin\,(k_z\,z -\omega\,t)
\end{array}\right)`$$`\quad(eq. 4.12)`$
The time-averaged Poynting vector becomes:
\cdot \sin\big(\underbrace{k\,\sin\theta}_{\large{wavevector}} z-\omega t\big)\overrightarrow{e_z}`$$`\quad(eq.1)`$
and
⊥ *b z* *x*
>
0
>
$`\overrightarrow{B}`$~⊥~ =  *E*0 *kz* sin ( *nπ y*) sin (*k~z~z* − *ωt*)
>
(4.12)
 *E*0 *nπ* cos ( *nπ y*) sin (*k~z~z* − *ωt*)
1 *E*^2^ *k~z~*
2 *[nπ]{.underline}*
(**P**) = 2 *cµ*0
sin
>
*k*
>
*y \_e~z~* (4.13)
>
*b*
>
The power transmitted by the guide (units \[*W* \]) can be found by
integrating the previous results over the cross-section of the
waveguide
= { *a* { *b*
= 1 *E*^2^ *k~z~*
>
(4.14)
>
i.e. the transmitted power is proportional to the cross-sectional area
of the waveguide. The practical limit of transmittable power is set by
the dielectric breakdown of the dielectric filling the waveguide. In
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment