Commit 20379b93 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a95fd29c
Pipeline #15627 failed with stage
......@@ -55,6 +55,21 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est :
<br>
**$`A_{résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|`$**
<br>
$`\quad\quad=\sqrt{4\,A^2 \cdot cos^2\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br>
$`\quad\quad \color{brown}{=\sqrt{2\,A^2 \cdot \big(1 + cos\,(\varphi_1 - \varphi_2)\big)}}`$
$`\begin{align} \color{brown}{A_{résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|}\\
&\\
&=\sqrt{4\,A^2 \cdot cos^2\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment