Commit a95fd29c authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 2fc8b5cb
Pipeline #15626 canceled with stage
......@@ -55,7 +55,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
* Son amplitude est :
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
$`\begin{align} \color{brown}{A_{résult.} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|}\\
&\\
&=\sqrt{4\,A^2 \cdot cos^2\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
\end{align}`$
......@@ -66,7 +66,7 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br>
$`\quad\quad =\sqrt{2\,A^2 \cdot \big(1 + cos\,(\varphi_1 - \varphi_2)\big)}`$
$`\quad\quad \color{brown}{=\sqrt{2\,A^2 \cdot \big(1 + cos\,(\varphi_1 - \varphi_2)\big)}}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment