Commit 2d03fc08 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent e662b616
Pipeline #18921 canceled with stage
......@@ -676,9 +676,7 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
\text{Identifie les termes } \overrightarrow{rot}\,\overrightarrow{E} \text{ et } \overrightarrow{rot}\,\overrightarrow{B}}}`$
$`\color{blue}{\scriptsize{\text{ à leurs causes avec respectivement}}}`$
$`\color{blue}{\scriptsize{\text{les équations de Maxwell-Faraday et Maxwell Ampère}}}`$
<br><br>
@@@@@@@@@@@@@
<br><br>
<br>
$`div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\overrightarrow{B}\cdot
\big(
......@@ -691,19 +689,21 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
<br><br>
$`
div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\mu_0\,\vec{j}\cdot\overrightarrow{E}\,+\,\mu_0\,\epsilon_0\dfrac{\partial \vec{E}}{\partial t}\cdot\overrightarrow{E}
=-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\mu_0\,\epsilon_0\dfrac{\partial \vec{E}}{\partial t}\cdot\overrightarrow{E}
\,
+\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\big)
-\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\big)
`$
<br><br><br>
<br><br>
@@@@@@@@@@@@@
<br><br>
$`\color{blue}{\scriptsize{
\text{Souviens-toi que } \vec{u}\dfrac{\partial \vec{u}}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial (\vec{u}\cdot\vec{u})}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial u^2}{\partial t}}}`$
<br>
$`
div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\mu_0\,\vec{j}\cdot\overrightarrow{E}\,+\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
=-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\,
+\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t}
-\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t}
`$
<br>
$`\color{blue}{\scriptsize{\text{La reconnaissance du terme d'effet Joule }\vec{j}\cdot\vec{E}=\dfrac{d\mathcal{P}_{cédée}}{d\tau}}}`$
......@@ -712,23 +712,23 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
<br>
$`
div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right)
= \underbrace{
= -\,\underbrace{
\vec{j}\cdot\overrightarrow{E}
}_{
\color{blue}{=\frac{d\mathcal{P}_{cédée}}{d\tau}}
}
\,+\,\dfrac{\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\,-\,\dfrac{\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\,
+\,\dfrac{1}{2\,\mu_0}\,\dfrac{\partial B^2}{\partial t}
-\,\dfrac{1}{2\,\mu_0}\,\dfrac{\partial B^2}{\partial t}
`$
<br>
$`\color{blue}{\scriptsize{\text{que tu peux réécrire :}}}`$
<br>
**$`\mathbf{
div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right)
= \vec{j}\cdot\overrightarrow{E}
\,+\,\dfrac{\partial}{\partial t}\,\left(
\dfrac{\epsilon_0\,E^2}{2}\,+\,\dfrac{B^2}{2\,\mu_0}
= -\,\vec{j}\cdot\overrightarrow{E}
\,-\,\dfrac{\partial}{\partial t}\,\left(
\dfrac{\epsilon_0\,E^2}{2}\,-\,\dfrac{B^2}{2\,\mu_0}
\right)
}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment