Commit 2d03fc08 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent e662b616
Pipeline #18921 canceled with stage
...@@ -676,9 +676,7 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)= ...@@ -676,9 +676,7 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
\text{Identifie les termes } \overrightarrow{rot}\,\overrightarrow{E} \text{ et } \overrightarrow{rot}\,\overrightarrow{B}}}`$ \text{Identifie les termes } \overrightarrow{rot}\,\overrightarrow{E} \text{ et } \overrightarrow{rot}\,\overrightarrow{B}}}`$
$`\color{blue}{\scriptsize{\text{ à leurs causes avec respectivement}}}`$ $`\color{blue}{\scriptsize{\text{ à leurs causes avec respectivement}}}`$
$`\color{blue}{\scriptsize{\text{les équations de Maxwell-Faraday et Maxwell Ampère}}}`$ $`\color{blue}{\scriptsize{\text{les équations de Maxwell-Faraday et Maxwell Ampère}}}`$
<br><br> <br>
@@@@@@@@@@@@@
<br><br>
$`div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big) $`div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\overrightarrow{B}\cdot =\overrightarrow{B}\cdot
\big( \big(
...@@ -691,19 +689,21 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)= ...@@ -691,19 +689,21 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
<br><br> <br><br>
$` $`
div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big) div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\mu_0\,\vec{j}\cdot\overrightarrow{E}\,+\,\mu_0\,\epsilon_0\dfrac{\partial \vec{E}}{\partial t}\cdot\overrightarrow{E} =-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\mu_0\,\epsilon_0\dfrac{\partial \vec{E}}{\partial t}\cdot\overrightarrow{E}
\, \,
+\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\big) -\,\overrightarrow{B}\cdot \dfrac{\partial \vec{B}}{\partial t}\big)
`$ `$
<br><br><br> <br><br>
@@@@@@@@@@@@@
<br><br>
$`\color{blue}{\scriptsize{ $`\color{blue}{\scriptsize{
\text{Souviens-toi que } \vec{u}\dfrac{\partial \vec{u}}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial (\vec{u}\cdot\vec{u})}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial u^2}{\partial t}}}`$ \text{Souviens-toi que } \vec{u}\dfrac{\partial \vec{u}}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial (\vec{u}\cdot\vec{u})}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial u^2}{\partial t}}}`$
<br> <br>
$` $`
div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big) div\,\big(\overrightarrow{E}\land\overrightarrow{B}\big)
=\mu_0\,\vec{j}\cdot\overrightarrow{E}\,+\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t} =-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\, \,
+\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t} -\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t}
`$ `$
<br> <br>
$`\color{blue}{\scriptsize{\text{La reconnaissance du terme d'effet Joule }\vec{j}\cdot\vec{E}=\dfrac{d\mathcal{P}_{cédée}}{d\tau}}}`$ $`\color{blue}{\scriptsize{\text{La reconnaissance du terme d'effet Joule }\vec{j}\cdot\vec{E}=\dfrac{d\mathcal{P}_{cédée}}{d\tau}}}`$
...@@ -712,23 +712,23 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)= ...@@ -712,23 +712,23 @@ $`\mathbf{div\,\big(\overrightarrow{U}\land\overrightarrow{V}\big)=
<br> <br>
$` $`
div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right) div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right)
= \underbrace{ = -\,\underbrace{
\vec{j}\cdot\overrightarrow{E} \vec{j}\cdot\overrightarrow{E}
}_{ }_{
\color{blue}{=\frac{d\mathcal{P}_{cédée}}{d\tau}} \color{blue}{=\frac{d\mathcal{P}_{cédée}}{d\tau}}
} }
\,+\,\dfrac{\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t} \,-\,\dfrac{\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\, \,
+\,\dfrac{1}{2\,\mu_0}\,\dfrac{\partial B^2}{\partial t} -\,\dfrac{1}{2\,\mu_0}\,\dfrac{\partial B^2}{\partial t}
`$ `$
<br> <br>
$`\color{blue}{\scriptsize{\text{que tu peux réécrire :}}}`$ $`\color{blue}{\scriptsize{\text{que tu peux réécrire :}}}`$
<br> <br>
**$`\mathbf{ **$`\mathbf{
div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right) div\,\left(\dfrac{\overrightarrow{E}\land\overrightarrow{B}}{\mu_0}\right)
= \vec{j}\cdot\overrightarrow{E} = -\,\vec{j}\cdot\overrightarrow{E}
\,+\,\dfrac{\partial}{\partial t}\,\left( \,-\,\dfrac{\partial}{\partial t}\,\left(
\dfrac{\epsilon_0\,E^2}{2}\,+\,\dfrac{B^2}{2\,\mu_0} \dfrac{\epsilon_0\,E^2}{2}\,-\,\dfrac{B^2}{2\,\mu_0}
\right) \right)
}`$** }`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment