Commit 35c389eb authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 25cbaa6b
Pipeline #13322 canceled with stage
...@@ -430,29 +430,29 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\ ...@@ -430,29 +430,29 @@ $`\mathbf{d\phi=\left.\dfrac{\partial \phi}{\partial \alpha}\right|_M\cdot dl_{\
*$`\color{blue}{\mathbf{d\phi}}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$ *$`\color{blue}{\mathbf{d\phi}}`$*$`\;=\dfrac{\partial \phi}{\partial \alpha}\cdot d\alpha + \dfrac{\partial \phi}{\partial \beta}\cdot d\beta + \dfrac{\partial \phi}{\partial \gamma}\cdot d\gamma`$
*$`\color{blue}{\;= *$`\color{blue}{\;=
\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\, \mathbf{dl_{\alpha}} \dfrac{\partial \phi}{\partial \alpha}\,\dfrac{d\alpha}{dl_{\alpha}}\, \mathbf{dl_{\alpha}}
+\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\, \mathbf{dl_{\beta}} +\dfrac{\partial \phi}{\partial \beta}\,\dfrac{d\beta}{dl_{\beta}}\, \mathbf{dl_{\beta}}
+\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}\, \mathbf{dl_{\gamma}}}`$* +\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{d\gamma}{dl_{\gamma}}\, \mathbf{dl_{\gamma}}}`$*
La comparaison terme à terme de ces deux expressions de $`d\phi`$ donne : La comparaison terme à terme de ces deux expressions de $`d\phi`$ donne :
$`X_{\alpha}=\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{\partial \alpha}{\partial l_{\alpha}}\quad`$,$`\quad X_{\beta}=\dfrac{\partial \phi}{\partial \beta}\,\dfrac{\partial \beta}{\partial l_{\beta}}\quad`$,$`\quad X_{\alpha}=\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{\partial \gamma}{\partial l_{\gamma}}`$ $`X_{\alpha}=\dfrac{\partial \phi}{\partial \alpha}\,\dfrac{d\alpha}{dl_{\alpha}}\quad`$,$`\quad X_{\beta}=\dfrac{\partial \phi}{\partial \beta}\,\dfrac{d\beta}{dl_{\beta}}\quad`$,$`\quad X_{\alpha}=\dfrac{\partial \phi}{\partial \gamma}\,\dfrac{d\gamma}{dl_{\gamma}}`$
Soit Soit
$`\color{brown}{\mathbf{ $`\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
\dfrac{\partial \alpha}{\partial l_{\alpha}}\,\dfrac{\partial \phi}{\partial \alpha}\,\overrightarrow{e_{\alpha}} \dfrac{d\alpha}{dl_{\alpha}}\,\dfrac{\partial \phi}{\partial \alpha}\,\overrightarrow{e_{\alpha}}
+\dfrac{\partial \beta}{\partial l_{\beta}}\,\dfrac{\partial \phi}{\partial \beta}\,\overrightarrow{e_{\beta}} +\dfrac{d\beta}{dl_{\beta}}\,\dfrac{\partial \phi}{\partial \beta}\,\overrightarrow{e_{\beta}}
+\dfrac{\partial \gamma}{\partial l_{\gamma}}\,\dfrac{\partial \phi}{\partial \gamma}\,\overrightarrow{e_{\gamma}} +\dfrac{d\gamma}{dl_{\gamma}}\,\dfrac{\partial \phi}{\partial \gamma}\,\overrightarrow{e_{\gamma}}
}}`$ }}`$
##### Expression du gradient en coordonnées cartésiennes ##### Expression du gradient en coordonnées cartésiennes
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
dl_x=dx \Longrightarrow \dfrac{\partial x}{\partial l_x}=1\\ dl_x=dx \Longrightarrow \dfrac{dx}{dl_x}=1\\
dl_y=dy \Longrightarrow \dfrac{\partial y}{\partial l_y}=1\\ dl_y=dy \Longrightarrow \dfrac{dy}{dl_y}=1\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\ dl_z=dz \Longrightarrow \dfrac{dz}{dl_z}=1\\
\end{array}\right\}`$ \end{array}\right\}`$
$`\Longrightarrow\color{brown}{\mathbf{ $`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
...@@ -465,9 +465,9 @@ $`\Longrightarrow\color{brown}{\mathbf{ ...@@ -465,9 +465,9 @@ $`\Longrightarrow\color{brown}{\mathbf{
##### Expression du gradient en coordonnées cylindriques ##### Expression du gradient en coordonnées cylindriques
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
dl_{\rho}=d\rho\Longrightarrow \dfrac{\partial \rho}{\partial l_{\rho}}=1\\ dl_{\rho}=d\rho\Longrightarrow \dfrac{d\rho}{dl_{\rho}}=1\\
dl_{\varphi}=\rho\,d{\varphi} \Longrightarrow \dfrac{\partial \varphi}{\partial l_{\varphi}}=\dfrac{1}{\rho}\\ dl_{\varphi}=\rho\,d{\varphi} \Longrightarrow \dfrac{d\varphi}{dl_{\varphi}}=\dfrac{1}{\rho}\\
dl_z=dz \Longrightarrow \dfrac{\partial z}{\partial l_z}=1\\ dl_z=dz \Longrightarrow \dfrac{dz}{dl_z}=1\\
\end{array}\right\}`$ \end{array}\right\}`$
$`\Longrightarrow\color{brown}{\mathbf{ $`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
...@@ -479,9 +479,9 @@ $`\Longrightarrow\color{brown}{\mathbf{ ...@@ -479,9 +479,9 @@ $`\Longrightarrow\color{brown}{\mathbf{
##### Expression du gradient en coordonnées sphériques ##### Expression du gradient en coordonnées sphériques
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
dl_r=dr\Longrightarrow \dfrac{\partial r}{\partial l_r}=1\\ dl_r=dr\Longrightarrow \dfrac{dr}{dl_r}=1\\
dl_{\theta}=r\,d{\theta} \Longrightarrow \dfrac{\partial r}{\partial l_r}=\dfrac{1}{r}\\ dl_{\theta}=r\,d{\theta} \Longrightarrow \dfrac{dr}{dl_r}=\dfrac{1}{r}\\
dl_{\varphi}=r\,\sin\theta\,d\varphi \Longrightarrow \dfrac{\partial \varphi}{\partial l_{\varphi}}=\dfrac{1}{r\,\sin\theta}\\ dl_{\varphi}=r\,\sin\theta\,d\varphi \Longrightarrow \dfrac{d\varphi}{dl_{\varphi}}=\dfrac{1}{r\,\sin\theta}\\
\end{array}\right\}`$ \end{array}\right\}`$
$`\Longrightarrow\color{brown}{\mathbf{ $`\Longrightarrow\color{brown}{\mathbf{
\overrightarrow{grad}\,\phi= \overrightarrow{grad}\,\phi=
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment