Commit 3e182885 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9c84f35d
Pipeline #16490 canceled with stage
......@@ -84,18 +84,18 @@ avec $`t\in\mathbb{R}\text{ et } C\in\mathbb{R}^n`$
* Si $`M`$ est diagonalisable, la solution générale est de la forme :
<br>
**$`\large{\mathbf{
**$`\large{
\begin{align}
X(t) = & \; C_1\;e^{\,\lambda_1}\;V_1\;+\; C_2\;e^{\,\lambda_2}\;V_2 \;+\;\cdots \\
\mathbf{X(t)} = & \; C_1\;e^{\,\lambda_1}\;V_1\;+\; C_2\;e^{\,\lambda_2}\;V_2 \;+\;\cdots \\
& \; \;+\;\cdots \\
& \; \;+\; C_n\;e^{\,\lambda_n}\;V_n \end{align}}}`$**,
& \; \;+\; C_n\;e^{\,\lambda_n}\;V_n \end{align}}`$**,
<br>
<br>
**$`\large{
\begin{align}\mathbf{
X(t) = & \; C_1\;e^{\,\lambda_1}\;V_1\;+\; C_2\;e^{\,\lambda_2}\;V_2 \;+\;\cdots \\
& \; \;+\;\cdots \\
& \; \;+\; C_n\;e^{\,\lambda_n}\;V_n} \end{align}}`$**,
X(t) = & \; C_1\;e^{\,\lambda_1}\;V_1\;+\; C_2\;e^{\,\lambda_2}\;V_2 \;+\;\cdots} \\
& \mathbf{\; \;+\;\cdots } \\
& \mathbf{\; \;+\; C_n\;e^{\,\lambda_n}\;V_n} \end{align}}`$**,
<br>
avec :
* les $`\lambda_k`$ forme une suite des valeurs propres de $`M`$.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment